AI Search Is Great. Believe It. Now!
September 18, 2025
Sadly I am a dinobaby and too old and stupid to use smart software to create really wonderful short blog posts.
Cheerleaders are necessary. The idea is that energetic people lead other people to chant: Stand Up, Sit Down, Fight! Fight! Fight! If you get with the program, you stand up. You sit down. You shout, of course, fight, fight, fight. Does it help? I don’t know because I don’t cheer at sports events. I say, “And again” or some other statement designed to avoid getting dirty looks or caught up in standing, sitting, and chanting.
Others are different. “GPT-5 Thinking in ChatGPT (aka Research Goblin) Is Shockingly Good at Search” states:
Don’t use chatbots as search engines” was great advice for several years… until it wasn’t. I wrote about how good OpenAI’s o3 was at using its Bing-backed search tool back in April. GPT-5 feels even better.
The idea is that instead of working with a skilled special librarian and participating in a reference interview, people started using online Web indexes. Now we have moved from entering a query to asking a smart software system for an answer.
Consider the trajectory. A person seeking information works with a professional with knowledge of commercial databases, traditional (book) reference tools, and specific ways of tracking down and locating information needed to answer the user’s question. When the user was not sure, the special librarian would ask, “What specific information do you need?” Some users would reply, “Get me everything about subject X?” The special librarian would ask other questions until a particular item could be identified. In the good old days, special librarians would seek the information and provide selected items to the person with the question. Ellen Shedlarz at Booz, Allen & Hamilton when I was a lowly peon did this type of work as did Dominque Doré at Halliburton NUS (a nuclear outfit).
We then moved to the era of PCs and do-it-yourself research. Everyone became an expert. Google just worked. Then mobile phones arrived so research on the go was a thing. But keying words into a search box and fiddling with links was a drag. Now just tell the smart software your problem. The solution is just there like instant oatmeal.
The Stone Age process was knowledge work. Most people seeking information did not ask, preferring as one study found to look through trade publications in an old-fashioned in box or pick up the telephone and ask a person whom one assumed knew something about a particular subject. The process was slow, inefficient, and fraught with delays. Let’s be efficient. Let’s let software do everything.
Flash forward to the era of smart software or seemingly smart software. The write up reports:
I’ve been trying out hints like “go deep” which seem to trigger a more thorough research job. I enjoy throwing those at shallow and unimportant questions like the UK Starbucks cake pops one just to see what happens! You can throw questions at it which have a single, unambiguous answer—but I think questions which are broader and don’t have a “correct” answer can be a lot more fun. The UK supermarket rankings above are a great example of that. Since I love a questionable analogy for LLMs Research Goblin is… well, it’s a goblin. It’s very industrious, not quite human and not entirely trustworthy. You have to be able to outwit it if you want to keep it gainfully employed.
The reference / special librarians are an endangered species. The people seeking information use smart software. Instead of a back-and-forth and human-intermediated interaction between a trained professional and a person with a question, we get “trying out” and “accepting the output.”
I think there are three issues inherent in this cheerleading:
- Knowledge work is short circuited. Instead of information-centric discussion, users accept the output. What if the output is incorrect, biased, incomplete, or made up? Cheerleaders shout more enthusiastically until a really big problem occurs.
- The conditioning process of accepting outputs makes even intelligent people susceptible to mental short cuts. These are good, but accuracy, nuance, and a sense of understanding the information may be pushed to the side of the information highway. Sometimes those backroads deliver unexpected and valuable insights. Forget that. Grab a burger and go.
- The purpose of knowledge work is to make certain that an idea, diagnosis, research study can be trusted. The mechanisms of large language models are probabilistic. Think close enough for horseshoes. Cheering loudly does not deliver accuracy of output, just volume.
Net net: Inside each large language model lurks a system capable of suggesting glue cheese on pizza, the gray mass is cancer, and eat rocks.
What’s been lost? Knowledge value from the process of obtaining information the Stone Age way. Let’s work in caves with fire provided by burning books. Sounds like a plan, Sam AI-Man. Use GPT5, use GPT5, use GPT5.
Stephen E Arnold, September 18, 2025
Comments
Got something to say?

