a2 United States Patent

US007068192B1

(10) Patent No.: US 7,068,192 B1

Dean et al. 45) Date of Patent: Jun. 27, 2006
(54) SYSTEM AND METHOD FOR ENCODING 5946716 A * 8/1999 Karp et al. ..coovvveen..... 711/207
AND DECODING VARIABLE-LENGTH DATA 6,553,457 BL* 4/2003 Wilkins ct al. 71113

(75) Inventors: Jeffrey Dean, Palo Alto, CA (US);
Michael Burrows, Palo Alto, CA (US);
Gauthaum K. Thambidorai,
Sunnyvale, CA (US); Olcan
Sercinoglu, Mountain View, CA (US)

(73) Assignee: Google Inc., Mountain View, CA (US)

(*) Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35
U.S.C. 154(b) by 0 days.

(21) Appl. No.: 10/917,745

(22) Filed: Aug. 13, 2004
(51) Imt.CL
HO3M 7/40 (2006.01)
(52) US.CL et 341/67; 707/100
(58) Field of Classification Search 341/50,

341/106, 67, 65; 707/100, 101
See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS
5,548,751 A * 8/1996 Ryuetalcce....... 707/102
5,758,360 A * 5/1998 Zbikowski et al. 707/205

6,646,577 B1* 11/2003 Acharya et al. .. 341/67
6,728,722 B1* 4/2004 Shaylor 707/101
6,832,294 B1* 12/2004 Wicki et al. 711/128

* cited by examiner

Primary Examiner—Peguy JeanPierre
(74) Attorney, Agent, or Firm—Morgan, Lewis & Bockius
LLP

(57) ABSTRACT

A system and method for encoding and decoding variable-
length data includes storing data values in a data structure
including a data field and a tag field. The data field includes
one or more variable-length data subfields capable of storing
variable-length data (e.g., 1 to N bytes of data). In some
embodiments, the data subfields and the tag field of the data
structure each start on a byte boundary which simplifies
decoding. The tag field includes one or more tag subfields,
each corresponding to the one or more data subfields. Each
tag subfield includes one or more tag bits which indicate the
length of the data stored in the corresponding data subfield.
Unpacking or decompressing data values from the data
structure can be achieved by using a look-up table of offsets
and masks, thus reducing the number of bit operations
needed to unpack data values from the data structure.

27 Claims, 8 Drawing Sheets

Grouped Variable-Length Data Structure

400
Tag Bits (1-Byte) LAZ
404 ’
r A) 1-Byte 1-Byte 1-Byte 1-Byte 1-Byte
T T T
00 : 01 : 00 : 00 27 2 13 251
| i |
[N J
Y
410 410b 410c 410d 408a 2-Bytes 408c 408d

US 7,068,192 B1

Sheet 1 of 8

Jun. 27, 2006

U.S. Patent

(1192

<

ejeq jo
sdnousg)

papoou3z

Japoou3 ejeq
yibua-a|qeliep
padnous

L ainbi4

0ci

<

(reuondQ)
Japoou3 Bjjag

00l
wajsAg Buipoouz

oLl

<

(reuondo)
Jossasoud-aud

ejeq
mey

US 7,068,192 B1

Sheet 2 of 8

Jun. 27, 2006

U.S. Patent

ejeq
MeY

ejeq jo
sdnoug)

papoou3

Z 84nbi4
0ce oLe
(euondo) ._Muoown_ ejeqg
: — Yl}buag-a|qeliep
48poda(qg e}jag padnois)
(s)aiqelL
jse
A9SHO

00¢

wajsAg Buiposaq

US 7,068,192 B1

Sheet 3 of 8

Jun. 27, 2006

U.S. Patent

¢ aunbi4
pP90E 290¢ q90¢ B9Q0¢ P80E 280 dq80f ©80¢
ooo sajig N-1 sa)Ag N-} sa)Ag N-I sa)Ag N-J eee |SUGN|SHGI|SHGN|SNE N
Y Y J
zoe $0¢
00¢€

ainjony)s ejeq yibuay-ajqeliep padnols

US 7,068,192 B1

Sheet 4 of 8

Jun. 27, 2006

U.S. Patent

gy ainbi4
G62'196'V6Z'Y - 912'LLL9) 1 1
SLZ'LLL'9L - 9€6'G9 E oi
GE6°G9 - 962 r4 10
6SZ- 0 I 00
obuey anjep so)Ag sjg bej
v a4nbi4
pPsovy o80¥ sajAg-z B8OV POLY 0LV qo0L¥ eoLy
A
f]
| | 1
1SZ ¢l r A ¢ L2 00 “ 00 " 10 “ 00
| | l
ajig-1 alkg-} a1Ag-1 91Ag-1 aJAg-) . ")
; vor
- aAg- 1q be
=5 (93hg-1) sug bey
(1]} 4

ainjonJ)s ejeq yibua-ajqeuep padnous

US 7,068,192 B1

Sheet 5 of 8

Jun. 27, 2006

U.S. Patent

g¢ ainbiy
P8o¥ 280 sojig-z egoy POLY O0LY¥ qoiLy e0Ly
qs8ot
— A
I 1 I
_ | |
192 €l Z € yx4 00 | 00 | 10 | 00
] I 1
¥ v J
9SS 1N olu] xapuj uy
aamonns 0€S GZS 0zs SIS sy pasn a1y sjg be)
ejeq IxaN jo uels
vs ainbi4
LT 33333F3F JIIFIIFII3 F3I3FIFIII3 FIFFIFIF €T 6 S T gs¢
9T FFIIFIIF FIFFIFIFF FIFFIFIFF FIFIFI00 (4 8 14 T 1414
ST FIFIIFIFIIFF FIFFIFIFF FIIFIFIFF FFFF0000 TT L £ T €9¢C
T 3FIIFIIFF IFIFFFIIFIF IFIFIIFF FF000000 0T 9 Z T 262
6 FF000000 F3000000 FFFF0000 FFFFFIIFIF 8 L) T L
8 FF000000 FF000000 33330000 FFFFFI00 L 9 14 T 9
L F3F000000 33000000 33330000 FFFF0000 9 S € T q
8 F3000000 FF000000 33000000 F3IFIIFIIT L 9 [+ T €
L FF000000 FF000000 FF000000 FFIFFFI00 9 q 14 T 4
9 FF000000 33000000 FF000000 FFFF0000) v £ 1 T
S FF000000 FF000000 FF000000 FF000000 v € 14 T 0
JXON v& u:H m* uaH N% ucH ﬂ# ucH v§ IuIl €# IUIl c# IuIl T# ul
395330 395330 395730 398330 398330
GGS 0SS GG 0€s 6Zs 02s GLS
005
(1Ln7) e1qel ysenAssHO

US 7,068,192 B1

Sheet 6 of 8

Jun. 27, 2006

U.S. Patent

(sonjeA ejep
nq-zg “6°9)
sanjeA
ejeq mey
N jo dnouog

g ainbi4
ﬂc
ejeq payoed <
19oed jig
< anjeA
809 [sayhgjo #
sanjep sjuawalinbay
- pa)yoed ol obeio)g —
dnoig sjig be] puaddy aulwialaq
paposuy
209
PISl4 <
sug bey be)| ajeiauan anjep
IsaAg jo #
909
009

$$990.d Buipooug

US 7,068,192 B1

Sheet 7 of 8

Jun. 27, 2006

U.S. Patent

-4

80.

/ 9inbi14

sanjeA ejeq O
dnouc) papoosaq

sjasy O bBuisn ainyonng
ejeq JO sPIdyqns
ejeq ol sysep A|ddy

-t

sysep

pue s}asy0

Xapuj
uy sy sug bej Buisn
9|qeL XSENAOSHO WOy
S)Se| Pue S}asKO Yo

904

H

voL /\ﬁ

3|qeL XSEINAISKO

syg bey

ainjon.g ejeq JO
piai4 bej apodaq

-
sanjepA
ejeq jo dnouo

Nch/.ﬂ

A

00Z

plei4 Bej ixaN
JO Hels 0] 318SHO

$$920.4 Buipodag

paposu3 Jo4
alnjonas ejeq

US 7,068,192 B1

Sheet 8 of 8

Jun. 27, 2006

U.S. Patent

g auinbiy

ovg—"| Jopooa(Q eyeQg
wﬂw\: Japoougz ejeq
9c8 o Jossasoidaiyg asepaul
yomjeN [
veg | ejeq papoou3 918
2e8 eleq mey
0eg | ajqe) dnyoo- sysep B 39SHO
gzg— | 4epodeq ejeq uyibue-ajqenen
9zg— | 4epodu3 geq ybua-aqelep
vzg "] uoneoddy /.v_.m
Zz8-"| SINPOIN UOHEDIUNWIWOY HIOMISN Z18
0zg | wajsAg Bunesado (sindd
N—
818
Kowap
008
wia)sAgisindworn

US 7,008,192 B1

1

SYSTEM AND METHOD FOR ENCODING
AND DECODING VARIABLE-LENGTH DATA

RELATED APPLICATION

This application is related to U.S. patent application Ser.
No. 10/917,739, filed Aug. 13, 2004, entitled “Document
Compression System and Method For Use With Tokenspace
Repository,” which is incorporated by reference herein in its
entirety.

TECHNICAL FIELD

The disclosed embodiments relate generally to data pro-
cessing systems and methods, and in particular to a system
and method for encoding and decoding variable-length data.

BACKGROUND

Some data processing applications (e.g., search engines)
work extensively with variable-length data (e.g., variable-
length integers). To conserve space and/or increase through-
put, variable-length data can be encoded into a compressed
format which represents the data in fewer bytes than would
ordinarily be used to store the data. For example, an integer
value may be associated with a 32-bit integer data type.
However, if the actual value of the integer is in the range of
0 to 255, the value can be more compactly represented by
8-bits or a single byte, resulting in a savings of 24 bits or
three bytes.

The encoding of variable-length data into a compressed
format typically requires the storing and maintaining of
additional information for use in decoding, such as data
indicating the number of bits or bytes used to represent a
compressed integer value. The management of such “book-
keeping” information typically requires additional overhead
bits for use during decoding. For example, some conven-
tional encoders add a “continuation bit” to each byte used to
represent a compressed integer value to assist the decoder in
identifying boundaries between consecutive compressed
integer values. Although effective, such encoding techniques
typically require several bitwise operations (e.g., Boolean,
shift, branch, etc.) to unpack or decompress the integer
values, which can slow down the decoding process and
degrade overall system performance. Such degradation is
especially problematic in applications that perform large-
scale processing of compressed data, such as information
retrieval systems.

Accordingly, what is needed is a system and method for
efficiently encoding and decoding variable-length data.

SUMMARY OF DESCRIBED EMBODIMENTS

Data values may be stored in a variable length data
structure including a data field and a tag field. The data field
includes one or more data subfields, each capable of storing
variable-length data (e.g., 1 to N bytes of data). In some
embodiments, the data subfields and the tag field of the data
structure each start on a byte boundary which simplifies
decoding. The tag field includes one or more tag subfields
corresponding to the one or more data subfields. Each tag
subfield includes one or more tag bits which indicate the
length of the data stored in the corresponding data subfield.
Unpacking or decompressing data values from the data
structure can be achieved by using a look-up table of offsets
and masks, thus reducing the number of bit operations
needed to unpack data values from the data structure.

20

25

30

35

40

45

50

55

60

65

2

In some embodiments, a data structure stored in a com-
puter-readable medium includes a tag field that occupies a
contiguous space in the data structure. The tag field specifies
storage lengths for N data values, where N is a positive
integer greater than one. The data structure further includes
N data fields contiguously arranged with the tag field for
storing the N values, wherein each of the N data fields has
a storage length specified by the tag field.

In some embodiments, a method of decoding an encoded
block of data includes decoding a tag, occupying a contigu-
ous space, so as to identify storage lengths for N fields of the
encoded block of data, where N is an integer greater than
one; and reading the N fields at positions in the encoded
block of data determined in accordance with the tag, wherein
the encoded block of data includes a contiguously stored set
of fields, including the tag and the N fields.

In some embodiments, a method of encoding a block of
data includes: generating a tag, occupying a contiguous
space, comprising N subfields, each subfield specifying a
respective length of a respective field of N fields in a set of
fields; and storing the tag and the set of fields in a block of
data comprising a contiguous set of storage locations,
wherein each of the N fields has a length specified by a
respective subfield of the N subfields.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a flow diagram of an embodiment of an encoding
system for encoding variable-length data.

FIG. 2 is a flow diagram of an embodiment of a decoding
system for decoding variable-length data.

FIG. 3 illustrates an embodiment of a data structure for
use in encoding variable-length data.

FIG. 4A illustrates an embodiment of a data structure for
use in encoding a group of four 32-bit variable-length
unsigned integer values.

FIG. 4B is a table illustrating tag bit pair assignments for
various ranges of integer values.

FIG. 5A illustrates an embodiment of a combined offset/
mask table for decoding the encoded group of integer values
of FIG. 4.

FIG. 5B illustrates an embodiment of the data structure of
FIG. 4 showing byte offset boundaries.

FIG. 6 is a flow diagram of an embodiment of a encoding
process for encoding a group of variable-length integer
values.

FIG. 7 is a flow diagram of an embodiment of a decoding
process for decoding an encoded group of variable-length
integer values.

FIG. 8 is a block diagram of an embodiment of a computer
system for implementing the encoding and decoding pro-
cesses of FIGS. 6 and 7.

Like reference numerals refer to corresponding parts
throughout the several views of the drawings.

DESCRIPTION OF EMBODIMENTS

FIG. 1 is a flow diagram of an embodiment of an encoding
system 100 for encoding variable-length data. The encoding
system 100 includes an optional preprocessor 110, an
optional delta encoder 120 and a variable-length data
encoder 130. Variable-length data can be stored as various
data types including, without limitation, integers, character
strings, floating-point numbers, fixed-point numbers and the
like. The variable-length data includes but is not limited to
text, images, graphics, audio samples and the like.

US 7,008,192 B1

3

In some embodiments, raw data is received by the pre-
processor 110 which orders the information for efficient
encoding. For example, the pre-processor 110 may order the
data into a monotonic sequence using one or more sorting
algorithms. If a set of integers are sorted by value, then
adjacent integers will be close in magnitude, thus enabling
the delta encoder 120 to generate small valued integers for
encoding. The ordered data is received by the delta encoder
120, which computes differences between adjacent pairs of
the ordered data to obtain the small valued integers. The
small valued integers are received by the variable-length
data encoder 130, which encodes the data into a compressed
format which can be efficiently decoded, as described more
fully with respect FIGS. 3-7.

FIG. 2 is a flow diagram of an embodiment of a decoding
system 200 for decoding variable-length data. The decoding
system 200 includes a variable-length data decoder 210 and
an optional delta decoder 220. In some embodiments,
encoded groups of data are received by the variable-length
data decoder 210, which decodes the groups with the assis-
tance of one or more offset/mask tables. The decoded data is
received by the delta decoder 220, which computes running
sums, thereby producing delta-decoded data, which is
equivalent to the original raw data. The use of offset/mask
tables in decoding group encoded variable-length integer
values is described more fully with respect to FIGS. 5 and
7.

FIG. 3 illustrates an embodiment of a grouped variable-
length data structure 300 for use in encoding variable-length
data. The data structure 300 includes a variable length data
field 302 and a fixed-length tag field 304. The variable-
length data field 302 includes two or more variable-length
data subfields 306 and the tag field 304 includes fixed-length
tag subfields 308. In some embodiments, each data subfield
306 stores a variable-length data value that can range from
1 to N bytes in length. Each data subfield 306 has a
corresponding fixed-length tag subfield 308 which is used to
represent the actual number of bytes used in the data subfield
306. For example, the data subfield 306a corresponds to the
tag subfield 308a, the data subfield 3065 corresponds to the
tag subfield 3085 and so on. Each tag subfield 306 includes
M tag bits, where N=2*. Thus, if N=4, then each data
subfield 306 will have a potential length of 1 to 4 bytes and
the corresponding tag subfield 308 will include M=2 tag bits.
Likewise, if N=8, then each data subfield 306 can potentially
include 1 to 8 bytes and the corresponding tag subfield 308
will include M=3 tag bits and so on. As can be observed
from these examples, the tag subfields 308 include the
minimum number of tag bits needed to represent the maxi-
mum length of the corresponding data subfield 306.

In the embodiment shown in FIG. 3, the data structure 300
occupies a contiguous space, and the tag field 304 occupies
a contiguous space within the data structure 300. More
generally, the tag field 304 may be located anywhere within
the data structure 300 or it can be stored as a separate data
structure. Locating the tag field 304 at the beginning or end
of a data structure 300 allows an adjacent data structure in
a sequence of data structures (e.g., an encoded data stream)
to be easily located and accessed using simple arithmetic
operations and/or a table lookup. Storing the tag field 304 in
a separate data structure also allows the tag field 304 to be
processed as a separate data stream in, for example, a
multi-threaded or multi-processor environment. As a sepa-
rate data stream, the tag field 304 can be encoded using one
or more conventional encoding schemes (e.g., run-length
encoding).

20

25

30

35

40

45

50

55

60

65

4

In some embodiments, data subfields 306 of the data
structure 300 and the tag field 304 each start on a byte
boundary (i.e., the tag field 304 and each of the data fields
306 occupies an integer number of bytes), which greatly
simplifies the decoding process, as described more fully
with respect FIG. 7. It should be apparent, however, that the
data structure 300 is not limited to four data subfields 306
and four tag subfields 308 and that more or fewer data
subfields 306 and tag subfields 308 can be included in the
data structure 300, as needed, depending upon the applica-
tion. Furthermore, in some embodiments the tag field 304
may occupy an amount of space that is not an integer
number of bytes, and one or more of the data fields 306 may
occupy an amount of space that is not an integer number of
bytes. For instance, the tag subfields 308 may specify the
lengths of the data fields in units of 4-bit nibbles, or any
other appropriate unit.

FIG. 4A illustrates an example of a data structure 400 for
use in encoding a group of four 32-bit variable-length
unsigned integer values. An example of an application
where such 32-bit unsigned integer values can be used in an
inverse index for an information retrieval system, such as the
system and method described in co-pending U.S. application
Ser. No. 10/917,739, filed Aug. 13, 2004, entitled “Docu-
ment Compression System and Method For Use With
Tokenspace Repository,” which is incorporated by reference
herein in its entirety.

The data structure 400 includes a variable-length data
field 402 and a fixed-length tag field 404. The data field 402
includes four variable-length data subfields 408 and the
fixed-length tag field 404 includes four fixed-length tag
subfields 410. In this particular example, three of the data
subfields 408a, 408¢, 4084 each store a single byte of data
and the fourth data subfield 4085 stores two bytes of data.
For illustrative purposes, each byte of data in the data
structure 400 shown in FIG. 4A is represented by a decimal
(base 10) equivalent value. For example, the data subfield
408d stores a byte having a decimal equivalent value of 251,
data subfield 408¢ stores a byte having a decimal equivalent
value of 13, data subfield 40856 stores two-bytes having
respective decimal equivalent values of 2 and 3, and data
subfield 408a stores a byte having a decimal equivalent
value of 27.

The tag subfields 410a, 410c¢ and 4104, corresponding to
data subfields 408a, 408¢ and 4084, each include the bit pair
“00,” indicating that each of the data subfields 408a, 408¢
and 4084 store one byte of data. On the other hand, the tag
subfield 4105, corresponding to data subfield 4085, includes
the bit pair “01,” indicating that the data subfield 4085 is
storing two bytes of data. In this particular embodiment, the
tag field 404 is one byte in length. It should be apparent,
however, that the tag field 404 can be one or more bytes in
length depending on how may integer values will be stored
in the data structure 400. For example, if eight integer values
are to be stored in the data structure 400, then the tag field
404 would be two bytes in length, i.e., two bits for every
integer value. It is also possible that more than two tag bits
would be needed for each tag subfield 410 to cover a larger
range of integer values. In such an embodiment, each tag
subfield 410 could include three bits, resulting in a tag field
that is three bytes long for a group of eight integer values (3
bitsx8 integer values=24 bits or 3 bytes).

FIG. 4B is a table illustrating tag bit pair assignments for
various ranges of integer values. Note that the data values
stored in data subfields 4084, 408¢ and 4084, namely “27”,
“13,” and “251,” all fall within the value range 0-255 and
therefore can be represented by one byte of data. The value

US 7,008,192 B1

5

stored in data subfield 4085, namely “515,” falls in the range
01'256-65,535 and therefore can be represented by two bytes
of data have decimal equivalent values of “2” and “3”
respectively.

FIG. 5A illustrates an embodiment of a combined offset/
mask table 500 for decoding the data structure 400 of FIG.
4A. The table 500 includes 256 rows which can be indexed
by tag value 510. Each row includes: 1) an offset for the first
515, second 520, third 525, and fourth 530 data subfields
408 in the data structure 400, 2) masks used for efficiently
reading the first 535, second 540, third 545, and fourth 550
data subfields 408 from memory, and 3) an offset 555 to a
next data structure. Note that if the tag field 404 is stored
highest in memory, then analogous table entries would
provide an offset 555 to an adjacent preceding data structure
400 in the sequence of contiguous data structures. In some
embodiments, certain offsets are unneeded and those col-
umns may be omitted from the table 500.

It should be apparent that the table 500 is not limited to
the number of rows and/or columns shown in FIG. 5A, but
can have any number of rows and columns, as needed,
depending upon the number of values that are group
encoded. In some embodiments, the offsets and masks are
stored in separate tables or other types of data structures
(e.g., lists, arrays, queues, etc.).

Referring again to the data structure 400, which has been
reproduced in FIG. 5B for the reader’s convenience, it can
be observed that the tag field 402 is one byte long and
includes tag subfields 410q, . . . ,410d, containing tag bit
pairs 00, 01, 00, and 00, respectively. These tag bit pairs in
turn correspond to a total data field 402 length of 5 bytes.
This particular combination of bit pairs has a decimal
equivalent value of “4” and therefore could be used to index
row 4 of table 500, as indicated with cross-hatching. In row
4 of table 500, the offsets 515, 520, 525 and 530 to the first
bytes of data stored in data subfields 408aq, . . . , 408d, are
1, 2, 4, and 5 bytes, respectively (reading from left to right
in FIG. 5B). The offset 555 to the next data structure is 6
bytes as expected. That is, a data structure that follows the
data structure 400 would begin at byte six, given that bytes
zero through five are included in the data structure 400.

Row 4 in table 500 also includes masks 000000fT,
00001fft, 000000ft, and 000000ff in hexadecimal notation
for decoding each 1-4 byte integer value into its original
32-bit integer format. In some embodiments, it may be
easier to read the packed integers with an unaligned full-
width read. This means that the least-significant bytes of the
integer will contain the packed integer, while the other bytes
will contain data from subsequent packed integers or other
data structures. The number of least-significant bytes that
will contain the packed integer depends on how many bytes
were used to store the packed integer. In some embodiments,
the mask may be used with a bitwise AND operation to
throw away bytes not used to store the packed integer. For
example, if an AND operation is performed between the five
byte data field 402 with the mask 000000ff, only the least
least-significant byte will survive the mask operation. Like-
wise the masks 0000fF1f, OO, and fHffif indicate that the
two, three, and four least-significant bytes should be kept.
Thus, since the starting positions of the data subfields 408
and tag field 404 are aligned on byte boundaries, the various
bytes stored in the data subfields 408 and tag field 404 can
be decoded using simple mask operations without unneces-
sary bit operations (e.g., bit shift operations, etc.).

FIG. 6 is a flow diagram of an embodiment of a encoding
process 600 for encoding grouped variable-length data val-
ues. The process 600 begins by determining the minimum

20

25

30

35

40

45

50

55

60

65

6

storage requirements (e.g., number of bytes) for a group of
N data values (602). In some embodiments, this is achieved
by looking at the magnitude of each data value (e.g., integer
value) and determining the minimum number of bytes
required to store the data value in a data structure (e.g., data
structure 400). For purposes of this explanation, the data
values are treated as integers, even though they may repre-
sent other types of values, such as characters, symbols, other
types of numeric values, and so on. A data value in the range
of 0-255 can be represented by one byte, while a data value
in the range of 256-65,535 can be represented by two bytes
and so on. After the storage requirements are determined, the
data values are packed into a data field (e.g., data field 402)
of' the data structure (604) based on the minimum number of
bytes needed to store the data values determined at 602. The
data values can be packed in the data field using known bit
packing techniques. In addition, a tag field (e.g., tag field
404) is generated that reflects the resulting packed data field
(606), using the systems and methods previously described
with respect to FIGS. 3-5. After the tag field is generated, it
can be appended to the data field (608). In some embodi-
ments, the tag field is appended to one end of the data
structure to simplify its decoding. In other embodiments, the
tag field is stored as a separate data structure to be decoded
into a separate data stream in, for example, a multi-threading
or multi-processor environment.

FIG. 7 is a flow diagram of an embodiment of a decoding
process 700 for decoding grouped variable-length data val-
ues, which may be integer values or other data values. A data
structure (e.g., data structure 400) storing a group of N
encoded data values is received by the decoding process 700
and the tag bits are decoded from the data structure (702).
The tag bits are preferably located at the beginning or end of
the data structure to facilitate their decoding using an offset
value stored in an offset/mask table 704, together with
knowledge of the tag field size (e.g., a byte). The tag bits are
used to index the offset/mask table 704 and to retrieve the
appropriate offsets and masks to decode the encoded data
values from the data structure (706) and load them into
registers or memory. The retrieved masks are then applied to
the data subfields of the data structure using the offsets
(708), thus resulting in a decoded group of data values.

Given an 8-bit tag field of “00000100” as shown in FIG.
4A, the appropriate byte offsets are retrieved from the
offset/mask table 500 and used to extract a set of values from
the data structure 400. These values may be stored in one or
more registers or memory. A bitwise AND operation is
performed on the extracted values and the corresponding
32-bit mask value retrieved from the offset/mask table 500,
resulting in the original 32-bit data value. Thus, the original
data values can be decoded from the data structure 400 using
a bitwise AND operation, and without performing branch or
shift operations that can degrade performance.

While the process flows described with respect to FIGS.
6 and 7 include multiple steps, it should be apparent that the
steps are not limited to any particular order, and, moreover,
the process flow can be executed using more or fewer steps,
including executing multiple steps simultaneously.

FIG. 8 is a block diagram of a computer system 800. The
computer system 800 can be a stand alone computer system
or part of a distributed processing system including multiple
computer systems 800. The computer system 800 generally
includes one or more processing units (CPUs) 812, one or
more network or other communications interfaces 816,
memory 818, and one or more communication buses 814 for
interconnecting these components. The system 800 may
optionally include a user interface, for instance a display and

US 7,008,192 B1

7

a keyboard. Memory 818 may include high speed random
access memory and may also include non-volatile memory,
such as one or more magnetic disk storage devices. Memory
818 may include mass storage that is remotely located from
the central processing unit(s) 812.

The memory 818 stores an operating system 820 (e.g.,
Linux or Unix), a network communication module 822, an
application 824, a variable-length data encoder 826, a vari-
able-length data decoder 828, an offset table and mask table
which may be combined into one table 830 or two separate
tables, raw data to be encoded 832 (e.g., 32-bit unsigned
integers), encoded data 834 (e.g., groups of four integers), a
preprocessing module 836, a delta encoder 838 and a delta
decoder 840. In some embodiments, the memory 818 stores
only a subset of these items. For instance, in some embodi-
ments, the system 800 decodes data, but does not encode
data, and as a result the system 800 does not include the
preprocessor 836, the encoder 826 and the delta encoder
838, and the “raw data” 832 comprises decoded data pro-
duced by decoding the encoded data 834. In an embodiment
that encodes data, but does not decode data, the system 800
includes the preprocessor 836 and encoder 826, but does not
include the variable-length data decoder 828, and lookup
table(s) 830 and delta decoder 840.

An example of an application 824 is a document com-
pression system used to generate a tokenspace repository, as
described in co-pending U.S. patent application Ser. No.
10/917,739, filed Aug. 13, 2004, entitled “Document Com-
pression System and Method For Use With Tokenspace
Repository,” which is incorporated by reference herein in its
entirety.

The preprocessing module 836 and delta encoder/decoder
838 operate as previously described with respect FIGS. 1
and 2. The variable-length data encoder 826 and variable-
length data decoder 828 operate as previously described
with respect to FIGS. 6 and 7. The encoded data 834 can be
stored in memory 818 using the data structures described
with respect to FIGS. 3-5.

The foregoing description, for purpose of explanation, has
been described with reference to specific embodiments.
However, the illustrative discussions above are not intended
to be exhaustive or to limit the invention to the precise forms
disclosed. Many modifications and variations are possible in
view of the above teachings. The embodiments were chosen
and described in order to best explain the principles of the
invention and its practical applications, to thereby enable
others skilled in the art to best utilize the invention various
embodiments with various modifications as are suited to the
particular use contemplated.

What is claimed is:

1. A data structure stored in a computer-readable medium,
comprising:

a tag field, occupying a contiguous space, the tag field for
specifying storage lengths for N data values, where N
is a positive integer greater than one; and

N data fields contiguously arranged with the tag field for
storing the N values, wherein each of the N data fields
has a storage length specified by the tag field.

2. The data structure of claim 1, wherein the contiguous
space occupied by the tag field has a size equal to an integer
number of bytes.

3. The data structure of claim 1, wherein the tag includes
N subfields, each specifying a respective length of a respec-
tive field of the N fields.

4. The data structure of claim 3, wherein a subfield of the
N subfields represents a value equal to a length of a
respective field minus one.

5

20

25

30

40

45

50

55

60

65

8

5. The data structure of claim 1, wherein N is equal to
four; and

the tag occupies only a single byte and includes four sub

fields, each subfield specifying a respective length of a

respective field of the four fields.

6. The data structure of claim 1, wherein each subfield
specifies a respective length of one to four bytes.

7. The data structure of claim 1, wherein a single byte of
the tag specifies lengths of a plurality of the N fields.

8. The data structure of claim 1, wherein the tag includes
N subfields, each subfield representing a value equal to a
length of a respective field minus one.

9. A data structure stored in a computer-readable medium,
comprising:

a contiguously stored set of fields, including:

a tag, occupying a contiguous space, the tag specifying
storage lengths for N values, where N is an integer
greater than one; and

N fields for storing the N values, wherein each of the
N fields has a storage length specified by the tag.

10. The data structure of claim 9, wherein the tag is
positioned at a beginning of the set of fields.

11. A method of decoding an encoded block of data,
comprising:

decoding a tag, occupying a contiguous space, so as to

identify storage lengths for N fields of the encoded

block of data, where N is an integer greater than one;
and

reading the N fields at positions in the encoded block of

data determined in accordance with the tag;

wherein the encoded block of data includes a contigu-

ously stored set of fields, including the tag and the N

fields.

12. The decoding method of claim 11, wherein decoding
the tag includes performing a table lookup using the tag as
an index.

13. The decoding method of claim 12, wherein perform-
ing the table lookup includes retrieving a plurality of offset
values corresponding to relative positions of respective
fields.

14. The decoding method of claim 12 wherein performing
the table lookup includes retrieving an offset value corre-
sponding to a relative position of a respective field.

15. The decoding method of claim 11 wherein decoding
the tag includes inspecting individual subfields of the tag.

16. The decoding method of claim 11 wherein reading the
N fields comprises performing an unaligned, full-width read
followed by masking off extraneous bytes.

17. A method of encoding a block of data, comprising:

generating a tag, occupying a contiguous space and com-

prising N subfields, each subfield specifying a respec-
tive length of a respective field of N fields in a set of
fields; and

storing the tag and the set of fields in a block of data

including a contiguous set of storage locations, wherein

each of the N fields has a length specified by a

respective subfield of the N subfields.

18. The encoding method of claim 17 wherein generating
the tag includes inspecting N values to determine N storage
lengths for the N values and generating the N subfields of the
tag so as to represent the N storage lengths.

19. The encoding method of claim 17 including storing
the N fields at positions in the encoded block of data
determined in accordance with the tag.

20. A system for decoding an encoded block of data,
comprising:

a processor;

US 7,008,192 B1

9

memory coupled to the processor and storing software

instructions including:

instructions to decode a tag, identifying storage lengths
for N fields of the encoded block of data; and

instructions to read the N fields at positions in the
encoded block of data determined in accordance with
the tag, wherein a tag occupies a contiguous space,
N is an integer greater than one, and the encoded
block of data includes a contiguously stored set of
fields, including the tag and the N fields.

21. The decoding system of claim 20, wherein the instruc-
tions to decode the tag include instructions to perform a table
lookup using the tag as an index.

22. The decoding system of claim 21, wherein the instruc-
tions to perform the table lookup includes instructions to
retrieve a least one offset value corresponding to relative
positions of respective fields.

23. The decoding system of claim 20, wherein the instruc-
tions to decode the tag include instructions to access indi-
vidual subfields of the tag.

24. The decoding system of claim 20, wherein the instruc-
tions to read the N fields includes instructions to perform an
unaligned, full-width read followed by masking off extra-
neous bytes.

15

20

10
25. A system for encoding a block of data, comprising:
a processor;

memory coupled to the processor and storing software
instructions including:

instructions to generate a tag; and

instructions to store the tag and a set of fields in a block
of data including a contiguous set of storage loca-
tions, wherein the tag occupies a contiguous space,
the tag comprises N subfields, each subfield specifies
a respective length of a respective field of N fields in
the set of fields, and each of the N fields has a length
specified by a respective subfield of the N subfields.

26. The encoding system of claim 25, wherein the instruc-
tions to generate the tag include instructions to inspect N
values to determine N storage lengths for the N values and
instructions to generate the N subfields of the tag so as to
represent the N storage lengths.

27. The encoding system of claim 25, including instruc-
tions to store the N fields at positions in the encoded block
of data determined in accordance with the tag.

