US 20070136201A1

a2y Patent Application Publication (o) Pub. No.: US 2007/0136201 A1l

a9y United States

Sah et al.

43) Pub. Date: Jun. 14, 2007

(54) CUSTOMIZED CONTAINER DOCUMENT
MODULES USING PREFERENCES
(75) Inventors: Adam Sah, Santa Cruz, CA (US);
Dylan Parker, Victoria (CA);
Christopher H. Rohrs, Mountain View,
CA (US); Steven L. Goldberg, San
Carlos, CA (US)

Correspondence Address:

HUNTON & WILLIAMS LLP
INTELLECTUAL PROPERTY DEPARTMENT
1900 K STREET, N.W.

SUITE 1200

WASHINGTON, DC 20006-1109 (US)

(73) Assignee: Google Inc., Mountain View, CA (US)

(22) Filed: Dec. 12, 2005
Publication Classification
(51) Inmt. Cl
G06Q 99/00 (2006.01)
(52) US. Cl et scecsseenene 705/51
57 ABSTRACT

Accordingly, various exemplary embodiments of the present
inventions may be directed to a method comprising storing
preference information for a user related to a module for use
with a container document, transmitting the preference
information with a request for data related to the module and
receiving module data customized based on the preference

(21) Appl. No.: 11/298,987 information.
302
OPEN CONTAINER
DOCUMENT
304
SELECT CONTENT f 300
ADDITION
308
UST OR
LIST REFERENCE REFERENCE
?
CONTENT
FROM MENU J— 310 REMOTE f 312
LOGATION IDENTIFIER
SELECTED ON nONIDEN
RECEIVED
/7
CONFIRM/ NO
SUBMIT [
320 INCOMPLETE J‘ 313
UNAPPROVED J LOCATION
RESPONSE REFERNCE
NO
APPD;OVE 218
315
YES DISPLAY LIST OF
322 POSSIBLE MODULES
VIEW UPDATED
CONTAINER
DOCUMENT 317
RECEIVE f

SELECTION

Patent Application Publication Jun. 14,2007 Sheet 1 of 15 US 2007/0136201 A1

HOST SERVER SYSTEM
20 /‘ 16 18
SPECIFICATION BACKEND /_ — 37
SERVER
SERVER GEOCODE ,_/
MODULE SERVER
CREATION |~ 32

= Containers SERVER 28
- Spec Data $ /-
- Formatting Data] N ANALYSIS | _~
- Preferences R MODULE
- Remote Module ID Data
- Advertisements 12 39
- ContentMonetary Data sl | svnD. || contaner |7 AD MODULE

|| (— 14 MAP -
\/ SERVER SERVER SERVER SERVER SERVER /‘ 10

36
38
Z
sa—] SYNDREC. | | synDRec.
SERVER SERVER
24
~ MODULE 30
DEVELOPER [/ -
REMOTE
SOURCE / SYSTEM
SYSTEM
MODULE /—30
NETWORK DEVELOPER
SYSTEM
REMOTE
SOURCE 2
SYSTEM

[

24

USER 22
SYSTEM & USER y— 22
SYSTEM

Fig. 1

Patent Application Publication Jun. 14,2007 Sheet 2 of 15 US 2007/0136201 A1
100
/' 103 /-
Add Conten /
CONTAINER PAGE 102
Upgrade —~ edt 4
available
PHOTO 105
| —! REMOTE STOCK _/_
1 MODULE MODULE
101
<< 1 >
edit | A 106a
B Undo” edit [
upgrade
TASK LIST /_ 106
| —| . MAPS
d MODULE MODULE]
102 -
V!
edit
108
GAME REMOTE MODULE Lx__ /_
P MODULE #1
104
edit[4 edit[edit [
REMOTE REMOTE REMOTE /‘ 114
| MODULE MODULE MODULE | _]
1 #2 #3 #4
110
I M/\m / CREATE A SECTION s
126—4 { Vil ENTER URL [|-—)|{-
I ENTERTAINMENT 12

Fig. 2

Patent Application Publication Jun. 14,2007 Sheet 3 of 15 US 2007/0136201 A1
302
OPEN CONTAINER f
DOCUMENT
304
SELECT CONTENT f 300
ADDITION
308
LIST OR
LIST REFERENCE REFERENCE
?
CONTENT
FROM MENU f 310 REMOTE f 2
LOCATION IDENTIFIER
SELECTED ON RECEIVED
RECEIVED
/‘ 314
CONFIRMW/ NO
SUBMIT <
320 INCOMPLETE J 313
UNAPPROVED J_ LOCATION
RESPONSE REFERNCE
NO
APPF:OVE 318
315
YES DISPLAY LIST OF J
2 POSSIBLE MODULES
VIEW UPDATED
CONTAINER
DOCUMENT 37
RECEIVE J—
SELECTION

Fig. 3

Patent Application Publication Jun. 14,2007 Sheet 4 of 15 US 2007/0136201 A1

402 /|

400 J

404

SPORTS

403
ENTERTAINMENT

MODULE PREVIEW

_—

PREVIEW OF
MODULE
HERE

Author

Author - affiliation
Author - email
Firefox only

US and English/Sp

BROWSE MODULES

JOE’S PAGE - www.joespage.com/module.xml

MOVIE RELEASES - www.moviereleases.com/module.xmil

SEARCH MODULES

[movies

406
Y

MOVIE RELEASES

anish

ENTERURL[

(ST,

128

408
CsearcA Y

/‘ 410
www.moviereleases.com/module.xml }-

A\

128

Fig. 4

Patent Application Publication Jun. 14,2007 Sheet 5 of 15 US 2007/0136201 A1

<?XML VERSION INFO>

<MODULE>

<MODULEPREFS> (OPTIONAL) </MODULEPREFS>
<USERPREFS> (OPTIONAL) </USERPREFS>
<CONTENT type=*__ ">

</CONTENT>

</MODULE>

Fig. 5

Patent Application Publication Jun. 14,2007 Sheet 6 of 15 US 2007/0136201 A1

<HTML>

... (OTHER HTML CODE HERE) ...
<l--
<?XML VERSION = “1.0” encoding = “UTF-8"7?>
<MODULE>
<CONTENT type = “htmi™>
Hello, world!
</CONTENT>
</MODULE>

-—>

</HTML>

Fig. 6

Patent Application Publication Jun. 14,2007 Sheet 7 of 15 US 2007/0136201 A1

<HTML>

... (OTHER HTML CODE HERE) ...

<l—

<?xml version="1.0" encoding="UTF-
8" ?>
<Module>
 <ModulePrefs
titte="hello world example" />

< Content type="html"> ⁢[CDATA[

Hello, world!
]1> </Content>
</Module>

-—>

</HTML>

Fig. 6(b)

Patent Application Publication Jun. 14,2007 Sheet 8 of 15 US 2007/0136201 A1

702 RECEIVE REMOTE
_’\ MODULE REFERENCE
FROM CONTAINER

704 ~~.| DETERMINE sTATUS

OF REMOTE MODULE

/— 708
e
706
APPROVED NO UNAPPROVED
? RESPONSE TAKEN
YES
700

CALL SERVER AT RM.
REFERENCE
(AND EVALUATE DATA
RECEIVED)

72 APPROVED NO
?
YES

714

W

710

PARSE DATA FOR
MODULE SPEC

L

PARSE MODULE SPEC

716

/

718 RETURN DATA TO

CONTAINER

)

Fig. 7

Patent Application Publication Jun. 14,2007 Sheet 9 of 15 US 2007/0136201 A1

802
IDENTIFY f

CONTENT TYPE

|

APPLY MODULE J‘ 804
PREFERENCES IF

AVAILABLE

|

APPLY USER f 806
PREFERENCES IF

AVAILABLE

l

810
GENERATE DATA IN f
CONTENT "

(0]
o
o

Fig. 8

Patent Application Publication Jun. 14,2007 Sheet 10 of 15 US 2007/0136201 A1

902
CREATE DIGITAL J_

SIGNATURE

|

INCORPORATE J‘ 904
DIGITAL SIGNATURE

IN MODULE

©
o

N

UPDATE MODULE 006

DESIGN SPEC TO J_

SUPPORT INLINE
GENERATION

Fig. 9

Patent Application Publication Jun. 14,2007 Sheet 11 of 15

PREFERENCES

US 2007/0136201 A1

Bob Brown

012345

012359

014572

Steve Jones

012345

015678

www.smith.com/module.xml
name = bob color = blue
sandwich = reuben

www.abc123.com/module.xm!
name = bob zip= 23123
stock = GOOG, ABC, GE

www.anothersiste.com/mobile.xml
name = bob login = bbrown
password = XY1235

www.smith.com/module.xml
name = steve color = green

www.abc123.com/module.xmi
name = steve

Fig. 10

Patent Application Publication Jun. 14,2007 Sheet 12 of 15 US 2007/0136201 A1

|
Host Server System I
50

|

52 | 32 i

Z Z
' |
| .
Proxy Server Module Server Container ——|—12
| Server |
' |
! , |
User System Network Specification |
Server
22
Target Content 56
Server

Fig. 11

Patent Application Publication Jun. 14,2007 Sheet 13 of 15

Container Document Opened

!

Module Identified

!

Module Content Transmitted (e.g., in HTML, XML, XHTML) To User
By Module Server

!

User 'System (e.g., Browser) Interprets Code Including Site
Collection Code (e.g., Javascript)

!

User System Passes Request For Collection Of Target Site Data To
Proxy Server .

US 2007/0136201 A1

1202

1204

1206

1208

1210

!

Proxy Server Collects Data From Target Site And Transmits To
User System

!

User System Manipulates Data Collected From Target Site Into
Format/Content Specified in Code

1212

1214

'

User System Displays Container Document With Manipulated
Target Site Data In Format Specified In Code Of Module

Fig. 12

1216

1200

Patent Application Publication Jun. 14,2007 Sheet 14 of 15 US 2007/0136201 A1

Bob's Personal

HomePage Search Now :
News Results for george bush edit ® Daily Horoscope for Taurus 2t

News results for george bush - View today's top stories
\@ Bush sitends church in Befling - Science Daily (press release) - 6
~Y/ hours ago
Bush urges China to exiend freedoms - Scotsman - 10 hours ago

A bolt of genius will hit you today

Sunday, November 20, 2005
Your Daity Number and Love Scopes

Make Your Own Module
[ntp/ |(Add Jrelp

Fig. 13

Patent Application Publication Jun. 14,2007 Sheet 15 of 15 US 2007/0136201 A1

/'1400
JOE'S REAL ESTATE WEBSITE

1 MORTGAGE CALCULATOR MODULE

1401

L ABC Mortgage Company - Best Rates!

1403

Joe’s real estate listing
123 Maple Avenue - $400,000 - 3BR, 2BA
245 Oak Avenue - $250,000 - 3BR, 1 BA

456 Sycamore St. - $425,000 - 3 BR, 3 BA

Fig. 14

US 2007/0136201 Al

CUSTOMIZED CONTAINER DOCUMENT
MODULES USING PREFERENCES

FIELD OF THE INVENTION

[0001] Embodiments of the present invention relate to
preference storage and communication for modules used in
a container document.

BACKGROUND OF THE INVENTION

[0002] Many websites offer users the capability to person-
alize a homepage. Such websites have typically offered the
user the opportunity to include predefined sections of infor-
mation or data in a predefined presentation format selected
from choices designed and incorporated by the website
operator. The user of such systems typically may personalize
the content within the sections, such as selecting specific
stocks to include in a section showing stock prices. These
personalized pages provide very limited flexibility.

[0003] This and other drawbacks exist with current sys-
tems.

SUMMARY OF THE INVENTION

[0004] Accordingly, various exemplary embodiments of
the present inventions may be directed to a method com-
prising storing preference information for a user related to a
module for use with a container document, transmitting the
preference information with a request for data related to the
module and receiving module data customized based on the
preference information.

[0005] Another exemplary embodiment may comprise a
system that comprises a module identification unit that
identifies one or more modules for use with a container
document, a preference unit that identifies preferences asso-
ciated with the module and a user to receive the container
document and transmits the preferences to a module server,
and a module server that receives module data based on the
preferences and serves module data to be used in the
container document.

[0006] Another exemplary embodiment may comprise a
method comprising storing preference information for a user
related to a module for use with a container document, the
preferences associated with a location reference where a
module specification is stored for the module, transmitting
the preference information with a request for data related to
the module to the location reference where a module speci-
fication is stored, and receiving module data customized
based on the preference information as applied to the
module specification.

[0007] Other embodiments may be considered.

BRIEF DESCRIPTION OF THE DRAWINGS

[0008] FIG. 1 depicts an overall system architecture
according to various embodiments of the present invention.

[0009] FIG. 2 depicts an illustrative container document
according to an embodiment of the present invention.

[0010] FIG. 3 depicts an illustrative process for adding a
module into a container document according to an embodi-
ment of the present invention.

Jun. 14, 2007

[0011] FIG. 4 depicts an illustrative interface for identi-
fying a module according to an embodiment of the present
invention.

[0012] FIG. 5 depicts an illustrative module specification
format according to an embodiment of the present invention.

[0013] FIG. 6 depicts an example of data containing a
module specification according to an embodiment of the
present invention.

[0014] FIG. 6(b) depicts an example of data containing an
altered module specification according to an embodiment of
the present invention.

[0015] FIG. 7 depicts an illustrative process for incorpo-
rating data from a module into a container document accord-
ing to an embodiment of the present invention.

[0016] FIG. 8 depicts an illustrative process for generating
data from a module according to an embodiment of the
present invention.

[0017] FIG. 9 depicts an illustrative process for enabling
a module to be inlined in a container document according to
an embodiment of the present invention.

[0018] FIG. 10 depicts an illustrative listing of the types of
preference information that may be stored according to an
embodiment of the present invention.

[0019] FIG. 11 depicts an illustrative system architecture
according to an embodiment of the present invention.

[0020] FIG. 12 depicts an illustrative process for deliver-
ing target server data from a module to a container document
according to an embodiment of the present invention.

[0021] FIG. 13 depicts an illustrative container document
containing modules with output generated through a proxy
server module according to an embodiment of the present
invention.

[0022] FIG. 14 depicts an illustrative embodiment of a
third party web site incorporating a module through syndi-
cation with an advertisement included therewith according
to an embodiment of the present invention.

DETAILED DESCRIPTION OF EXEMPLARY
EMBODIMENT(S)

[0023] Exemplary embodiments of the invention are dis-
cussed in detail below. While specific exemplary embodi-
ments are discussed, it should be understood that this is done
for illustration purposes only. A person skilled in the relevant
art will recognize that other components and configuration
can be used without departing from the spirit and scope of
the invention.

[0024] A personalized portal site (e.g. My Yahoo!, start-
.com, or Google Personalized Homepage) may allow the
user to select only content (e.g., interactive, read-only,
updating, data feeds, etc.) to display on a personalized page,
such as a new email alerts, current weather and/or traffic
conditions, movie showtimes, horoscopes, etc. According to
one embodiment of the present invention, these various
modules that may be incorporated into a personalized portal
page (one example of a container document) along with
modules developed (e.g., by an a third party developer) for
inclusion in the container.

US 2007/0136201 Al

[0025] Various embodiments provide a protocol for com-
munication between a hosting site (e.g., container server
system) and a module server (e.g., one operated by an entity
other than the user or the hosting site), process instructions
that describe the functionality of a module (wherever
hosted), a structured repository system for module data and
code that may include fixed module data and code as well as
per-user configuration information or user preferences (e.g.,
in a weather mapping module, the postal codes in which the
user is interested), and a proxy system that enables use of
target site data in a site.

[0026] The system may comprise a number of compo-
nents. The system may comprise a container server that
serves a container document (e.g., a personalized page). The
container document “contains” one or more modules,
including one or more remote modules. As used herein, the
term “container document™ or “container” should be under-
stood to include a personalized homepage of a website, a
sidebar, toolbar element that incorporates one or more such
modules, a page hosted by a site, a document capable of
rendering modules (e.g., any document capable of rendering
HTML code or XML code) in the format of the module (e.g.,
XML). Also, the container may be a website of another
entity that incorporates the modules when supplied the
modules through a syndication system.

[0027] As used herein, the term “module” may be under-
stood to refer to a piece of software and/or hardware that
renders data for use in a container document. Modules may
be personalized to user preferences, preferences of the
container, preferences of the environment or other inputs. A
module specification may be understood to include a set of
instructions used to render data for the container document
using elements that have been predefined.

[0028] Overview and System Architecture

[0029] FIG. 1 depicts an overall system diagram according
to one embodiment of the present invention. As illustrated,
FIG. 1 may comprise a host server system 10 with a plurality
of modules that may be associated therewith. Such modules
may comprise a container server 12, a module server 14, a
specification server 16, a back end server 18, an analysis
module 28, a module creation server 32, a syndication server
34, an advertisement server 36, a geocode server 37 and a
map server 39. As illustrated, personalized container server
10 may connect over a network 26 to a plurality of systems.

[0030] Other systems connected to the network may com-
prise one or more user systems 22, one or more remote
source systems 24, one or more module developer systems
30 and one or more syndication recipient servers 38. In
addition, one or more database systems 20 may operate in
conjunction with the various modules of host server system
10.

[0031] Container server 12 may serve the container docu-
ment to user systems 22 over network 26. Container server
12 may comprise a web server or related server systems that
takes data and/or instructions and formulates a container for
transmission over the network to the user system 22. It
should be appreciated, however, that container server 12
may reside on user system 22 as well so that a network
connection may not be used. In the example in which the
container document comprises a word processing document,
for example, container server 12 may comprise a word
processing module.

Jun. 14, 2007

[0032] Module server 14 may provide data from modules
to container server 12 for incorporation into a container
document. It should be appreciated that in one embodiment,
container server 12 and module server 14 may comprise a
single unit performing both functions. Module server 14
may provide data for the container document by interpreting
and/or parsing instructions in the module specification asso-
ciated with the module. According to one embodiment,
module server 14 may serve the module content to the
container document through the use of a browser IFRAME.
An IFRAME may be generally understood to be an inde-
pendently operated browser window instance inside the
container document. One advantage of an IFRAME is that
is protects the container document from the IFRAME’s
content and vice versa, e.g., JavaScript on the container
document may not be permitted to access any JavaScript
code in the inner [IFRAME (same for CSS, DOM, or cookie
objects).

[0033] To expedite display of container documents, mod-
ules may be displayed inline within the container document.
Inline display may be understood as referring to display with
other document elements. One example is a display gener-
ated from code for HTML in the body according to HTML
standards. In one embodiment, module server 14 or some
other component may determine whether the module is
deemed trusted prior to including it in the container docu-
ment inline due to the risks of various security issues an
inline module could create. According to one embodiment,
the module may incorporate an indicia of approval (e.g.,
digital certificate) issued by the container module or an
entity associated with the container module as described in
detail below. If the indicial of approval is present, module
server 14 may render the data from a module for inline
presentation in the container document.

[0034] Specification server 16 provides the module speci-
fication file to module server 14. The module specification
may be cached and stored in a database accessible to the
module server 14 and/or specification server 16 or may be
retrieved from a location associated with the specification as
detailed later. For example, specification server 16 may
reside on a remote source system 24. In addition, specifi-
cation server 16 may be connected to module server over a
network with the module specification located at another
location on the network accessible to specification server 16.

[0035] Backend server 18 may be provided for interacting
with one or more databases (e.g., large or dynamic databases
of information). For example, for a news module that
obtains frequent updates and demands a flow of data, (e.g.,
from an RSS feed), backend server 18 may format the data
into HTML for the container.

[0036] In one specific example, a person may create a
module (e.g., a maps module), such as one that uses an
application program interface (API) to an existing mapping
program to create a module to display a map of downtown
Mountain View, Calif. The module may comprise an XML
specification file or module specification file stored on a
specification server. The specification server may comprise
any server, including one on the site from which the con-
tainer page is hosted or any other site. The user or another
person may then include this new module on a personalized
homepage (container document). The server that serves the
container document may operate as the module server and

US 2007/0136201 Al

the server that generates the mapping data through an
inquiry from its API may be considered to be the backend
server.

[0037] According to one embodiment of the present inven-
tion, analysis module 28 may analyze modules at various
times (e.g., when the module is first selected by a user, each
time the module is called by a container for inclusion or at
any other time determined to be advantageous for safety and
security and other times). Analysis module 28 may perform
a number of actions, including comparing the module with
a list of disapproved or dangerous modules or a list of
approved modules. The comparison may involve exact or
substring (e.g., prefixes, suffixes and regular expressions)
matching by name or location (e.g., URL), contents of the
specification, contents of the location where the specifica-
tion resides, or information that may be ascertainable about
the module. Analysis module 28 may take one or more
actions in response to a determination that the module is
disapproved or dangerous, including, for example, silently
blocking the request, (i.e. providing a generic error), block-
ing the request with an error that explains the reason it was
blocked or redirecting the request to a different module
specification that has been determined to be safe and related
to the disapproved module (e.g., another module that relates
to maps, if the first one was a disapproved mapping site or
a module that includes the keyword “basketball” if the
disapproved module was a basketball module). For example,
through redirection, the URL of the original module may be
passed to the “safe” module. The safe module may then use
a proxy server, as described below, to retrieve the original
URL’s content. Developers may then replace the error
handler to fix small bugs in the original module to be able
to display the content of the original module. In another
embodiment, analysis module 28 may parse the module
content to determine whether it is safe, such as by compiling
JavaScript or other scripts contained in the module to try to
identify unsafe or undesired actions the module may per-
form.

[0038] One or more module creation servers 32 may be
provided. This server may operate as a “wizard” to enable
module creators to create a module through an interactive
process controlled by module creation server 32. For
example, module creation server 32 may provide a series of
user interfaces that enable the module creator to provide
inputs that are then used by the module creator to automati-
cally generate a module specification. For example, various
module specification templates may be provided with cor-
responding inputs. Module creation server 32 may then take
inputs supplied by a module creator, insert them into the
template and then generate the module specification for the
module. A preview, testing and debugging function may also
be offered as part of this “wizard.” This module may be
downloadable as well so it may be installed and operated at
any node on the network.

[0039] A syndication server 34 may prepare data for
transmission to one or more syndication recipient servers 38
related to modules. Syndication server 34 may receive a
request for a module and/or module content and deliver that
module or content to a syndication recipient server 38 over
network 26. Syndication server 34 may reside at host server
system 10 or at another location on the network. For
example, if an operator of a sports web site (an example of
a syndication recipient system 38) desired to include a maps

Jun. 14, 2007

module created by a remote source system 24, it may do so
through a request to syndication server 34. Syndication
server 34 may then cooperate with module server 14 to
generate data for the container document (here the sports
web site page of the syndication recipient system 38). That
may involve retrieving the module specification from remote
source system 24, supplying preferences received from the
syndication recipient server 38 (e.g., city information for the
sports team of a page being displayed) and/or generating
data for the container. It is also possible that the data may be
rendered at syndication recipient server 38 into its container
document in either an IFRAME or inline. Syndication server
34 may thus syndicate modules accessible to it. It may do so
based on requests for specific modules or other criteria it
determines (e.g., content matches, keyword matches, mon-
etary values associated with modules and/or syndication
requesters, etc.)

[0040] Ad server 36 may provide advertisements associ-
ated with modules to containers. For example, an advertise-
ment may be incorporated with module data when data is
delivered to a container document. Ad server 36 may operate
with syndication server 34 to deliver advertisements to
syndication recipient servers 38 based on a syndication
request for a module. The advertisements may be selected by
ad server 36 based on a wide variety of criteria, including,
but not limited to, the relationship between the content of or
information about the container, module, other modules in
the container, syndication recipient server information, mon-
etary elements/relationships related to any of the foregoing
and/or combinations thereof. Ad server 36 may comprise the
Google AdSense system, according to one embodiment of
the present invention. Ad server 36 may operate as described
in one or more of the following patent applications, the
subject matter of which is hereby incorporated by reference
in their entirety. Specifically, ad server 36 may manage
online advertising by associating two or more concepts
related to a module with an advertisement and associating a
bid, collectively, with the two or more keywords in the
manner discussed in the context of serving advertisements
with electronic documents in U.S. patent application Ser.
No. 10/340,193, filed on Jan. 10, 2003, entitled “Pricing
Across Keywords Associated with One or More Advertise-
ments,” which is incorporated by reference herein in its
entirety. Additional examples of presenting advertisements
and managing advertising costs are discussed in U.S. patent
application Ser. No. 10/340,543, filed on Jan. 10, 2003,
entitled “Automated Price Maintenance for Use With a
System in which Advertisements are Rendered with Relative
Preferences” and U.S. patent application Ser. No. 10/340,
542, filed Jan. 10, 2003, entitled “Automated Price Main-
tenance for Use With a System in Which Advertisements are
Rendered with Relative Preference Based on Performance
Information and Price Information,” which are incorporated
by reference herein in their entirety.

[0041] A geocode server 37 may be provided to generate
geocode information from location descriptions as is known
in the art. A geocode server 37 may generate latitude and
longitude numeric values from geographic locations.

[0042] A map server 39 may generate map output. Map-
ping systems, such as Google Maps and Google Earth, may
be used to generate this data.

[0043] One or more database systems 20 may be provided
that store, in any number of ways, container information,

US 2007/0136201 Al

module specifications and/or related information, formatting
data, per-user and per-module preference data, remote mod-
ule ID data, remote module location reference data, adver-
tisement data, advertiser data, content/monetary data, syn-
dication recipient data, templates for modules, inputs for
modules, lists of trusted and untrusted modules, approval
criteria and related information and/or any other information
used by the modules to operate as described herein. While a
single database structure is shown, it is well understood that
the data may be stored at a number of locations and in one
or more systems.

[0044] While one configuration is shown in FIG. 1, it
should be appreciated by one of ordinary skill in the art that
other configurations of these various modules may also be
possible. For example, the various modules depicted within
host server system 10 may be disposed at various locations
around network 26 or at various points on several networks.
In addition, whereas a single host server system 10 is
depicted, it should be appreciated that any number of each
of the modules depicted on FIG. 1 may be provided includ-
ing network 26.

[0045] In one embodiment, network 26 may comprise the
Internet. Other networks may also be utilized for connecting
each of the various systems and/or servers.

[0046] In addition, what is shown as user system 22 may
also operate as a remote source system 24 and/or a module
developer system 30. In other words, one computer system
may operate in different capacities: as a user system, as a
remote source system, as a syndication server, as a target
content server, and/or a module developer system. In addi-
tion, as explained in greater detail below, each of the
modules depicted within host server system 10 may also be
disposed at a user system 22, a remote source system 24, or
a module developer system 30. Similarly, databases 20 may
be associated with each of the modules depicted within FIG.
1 depending upon the configuration desired.

[0047]
ules

Iustrative Container Document Including Mod-

[0048] According to one embodiment of the present inven-
tion, systems and method are provided to incorporate mod-
ules into a container document. One example of a container
document would be a personalized home page, such as the
Google Personalized Homepage currently available to users
of the Google services on the Internet. Instead of restricting
the types of content that a user is able to include in a
container document such as a personalized home page, one
or more embodiments of the present invention enable users
to select modules from sources other than the source of the
container document. So, for example, a user may elect to
include a module in his or her personalized Google home
page from a source not associated with Google.

[0049] Tt should be appreciated that various forms of the
container document may exist but one such illustrative
example is depicted in FIG. 2. FIG. 2 depicts a container
page 100 with a plurality of modules that have been incor-
porated into the container document. A plurality of methods
of incorporation are possible including the use of the
IFRAME and inline HTML techniques. These issues will be
discussed in greater detail below. FIG. 2 depicts a plurality
of modules including a photo remote module 101, a task list
module 102, a game module 104, a stock module 105, a

Jun. 14, 2007

maps module 106, a remote module 108, a remote module
210, a remote module 312, and a remote module 114.
Different formats for the various modules may exist depend-
ing upon the specifications provided by the creator of the
module. As depicted, some modules may provide scroll bars,
and others may not. Some modules may be different sizes or
shapes than other modules. In addition, some modules may
offer the opportunity for the user to edit the display prefer-
ences and/or per-use data associated with the module. (See,
for example, modules 102, 104, 105, 106 and 110 that
provide an edit link.) For example, if the module relates to
a maps module 106, the user may be provided the oppor-
tunity to edit an address or addresses that are mapped in that
module. In one embodiment, inlined modules may be auto-
matically sized by a container document so no scrolling,
height or scaling information may be provided. If a module
developer wants the module to have these properties in this
embodiment, an inlined module may be wrapped with a
fixed size <DIV> tag and content placed in the tag. The
scroll bar, height and other characteristics may be then
specified for the inlined content. One of the attributes allows
specifying scaling=". . . ” to let the developer indicate how
a module may be scaled up or down for different sizes of
placements in the container documents.

[0050] One of the functions provided with this example
container document 100 is the opportunity to add content to
the container page through selecting the add content element
103. Upon selecting “add content” element 103, the system
may offer the user the opportunity to interactively indicate
an additional element to be included in the container page.
Various forms of an interface to receive that input may be
provided. One illustrative form is presented in FIG. 2 toward
the bottom of the page in section 120. In that section, the
user may be presented with an interface element to select
from a browsable list of modules that may be arranged into
a categorization structure. Another section of input section
120 may enable the user to specify a reference to a location
for a module to be incorporated into the container document.
Such a section may be such as that depicted through an input
box 126 with a submit element 128. In one illustrative
example, the user may specify a location reference (e.g., the
uniform resource locator (URL)) where data exists related to
a module to be incorporated. As explained in greater detail
below, one example of the data is an XML -based file that
meets the scripting preferences of the operator of the con-
tainer document system 10.

[0051] Another option is depicted in FIG. 4 wherein the
user may interact with an interface that allows the user to
browse through modules by category in section 402 with a
plurality of indicated available modules in section 403 or for
the user to utilize a search functionality 404 where the user
may put in information into a search box 406, select the
search button 408 and have results displayed in section 410.
The results of these searches and displays may provide the
location reference (e.g., URL) of data (e.g., an XML file) for
use in incorporating the module and the container document
as described below with reference to FIG. 3 and other
descriptions provided.

[0052] InFIG. 2 or4, apreview of a module, author name,
author affiliation and/or author email may be provided. To
provide protection for email, an anonymized email forward-
ing feature may be used to help protect against spammer-
crawlers. The display may also provide information about

US 2007/0136201 Al

what a module requires or works best with using a May-
Require attribute from a module preference (as described in
detail below). Here the module works only with the Firefox
browser and so that information is provided. Locality infor-
mation may also be provided. Here, this module is designed
for the Untied States and for English and Spanish.

[0053] In addition, in adding, editing or deleting modules,
it may be desired to have those activities occur without a
refresh of the container document. One illustrative technique
for achieving this may involve use of AJAX so a module
may be added to a container document without a refresh of
the container document page (perhaps only a refresh of the
IFRAME in which the new container is presented), or use of
AJAX to remove a module without the container document
being refreshed or when a developer is developing a module,
being able to change modules without the container docu-
ment in which they are populated having to have a page
refresh in order to incorporate the changed module.

[0054] FIG. 14 depicts another illustrative example of a
container. This container may be operated from a container
server that is not affiliated with the module server. The
container 1400 may be a third party website (here Joe’s Real
Estate Web Page) that lists real estate listing information. A
remote module 1401 may be incorporated through syndica-
tion from a module server. Here, the remote module may
comprise a mortgage calculator that Joe’s Real Estate Web
Page may find useful for visitors to its site. With the module,
one or more advertisements 1403 may also be provided, as
illustrated.

[0055]

[0056] FIG. 3 depicts an example of a method 300 used to
add a module to a container document. According to one
embodiment, in block 302, a container document may be
opened into which a new module is to be added. This may
be performed by presenting the container document to a user
or by a computer software element opening the container
document to determine its contents, for example. In block
304, a selection of content to be added is received. This
content selection may be received from a user such as
through the inputs described with reference to FIG. 2 or FIG.
4 or through some other mechanism by which the user may
provide an indication of a module to be added to the
container. In addition, in block 304 modules may be pro-
vided through an automated process whereby the system
determines a module to be added based upon various inputs.

[0057] Inthe case of a user input of, for example, a request
to add content through module 103 of container page 100, in
block 308 it may be determined whether the user is request-
ing the addition of a module through a list of available
modules or through a reference. If the user is providing an
input from a list, the content from a menu selection may be
received in block 310. That may be achieved by interaction
of the user with an interface such as that depicted in FIG. 2
or FIG. 4 by selecting one or more modules presented such
as that in 124 or 403 for example. Other methods of
receiving a selection of a module may also be provided. If
the user is providing a selection of a module from a
reference, then in block 312, a location reference may be
received. To facilitate the user’s ability to identify the data
for the module, an optional block 313 and 315 may also be
provided. In block 313, if the user’s remote location iden-
tifier ends with a slash, for example, or other indicator that

Illustrative Methods

Jun. 14, 2007

the user is asking for files at the location to be retrieved, then
in block 315, a list of possible modules may be displayed.
Block 315 may involve taking the remote location identifier
provided by the user and quering that location for a listing
of files or data representing module specifications, and
presenting the received response to that query in a list for the
user to choose. For example, the user may be provided a list
of files of module specifications at the location provided
whereby the user may select in block 317 one of those
presented files. For example, if the user provides a URL that
ends in a slash or provides some other incomplete location
reference, the system may in block 315 retrieve a listing of
all files containing module specifications at the location of
the URL whereby the user may choose one of the files, such
as one of the XML files in block 317. In another example,
the system may automatically guess from the content or
provide a directory listing or object listing (e.g., through a
database query) using web server resources, such as an
Apache webserver directory call or IIS directory call. The
list may be formatted in a way to make it easy to select such
as by highlighting more likely choices.

[0058] Inblock 314, the system may optionally enable the
user to confirm the selection of the module to be added
before the container page is updated. Upon performance of
block 314 or if a confirmation action is not included in the
process, after blocks 310 and/or 312 and/or 317, an optional
approval block 318 may occur.

[0059] According to various embodiments of the present
invention, the operator of the container document may
desire to protect the security of the container as well as the
security of the user systems interacting with the container.
Accordingly, one or more actions may be taken to determine
whether the module is approved prior to enabling the content
to be incorporated in the container. For example, an evalu-
ation of the content may occur to determine whether a
module is trustworthy, for example if there are not HTML
tags or other characteristics determined to be trusted. These
actions are described in greater detail below. If the approval
is not met, then in block 320, one or more unapproved
responses may occur as described above with reference to
analysis module 28.

[0060] If approval occurs, in block 322, the updated
container document may be presented to the user or to
whomever has provided the input of the module to add to the
container.

[0061] As described in greater detail below, according to
the present invention, a specification may be provided for
modules to utilize in order to be incorporated into a con-
tainer document by the host server system 10. FIG. 5 depicts
a module specification according to one embodiment of the
present invention. At its base level, the specification may
comprise a plurality of elements including the XML version
information, module preferences, which may be optional,
user preferences, which may be optional, a content type
designator and then a content element that is used to
populate the portion of the container allocated for the
module. It should be appreciated that the content may be
specified in various forms of code, typically code that is
interpretable by a user system when generating the container
for presentation. Such code may include HTML,, JavaScript,
or other forms of code that may be used to depict the format
of a web page.

US 2007/0136201 Al

[0062] According to another embodiment of the present
invention, the module specification may be embedded in one
or more other files or computer instructions. According to
this embodiment, the module server 14 may, when provided
with the identification of data for generating a module, look
for a module specification within the data. One of the forms
of data may be another HTML file, as depicted in an
illustrative example of FIG. 6. In this example, amongst
other codes of an HTML document, a document specifica-
tion may be provided as shown for example in FIG. 6. This
example is a simple form of a module that would depict the
words, “Hello world!”, within the portion of the container to
which it has been allocated. As is shown, the document
specification is contained within another HTML page and
accordingly the file in which the document specification is
located likely would have the suffix of .htm or .html. In
another example, a computer instruction, such as “debut,
““about” or some other instruction may be identified that
provides the specification. Thus, according to one embodi-
ment of the present invention, although the document speci-
fication may comprise an XML type file, the source of the
module specification may actually be another form of data or
file type from which the module specification may be
identified.

[0063] In addition, a repository of data may alter, modify,
change, or corrupt a module specification. For example,
many data repositories “escape” HIML or XML content
when it is stored and used as a source. Some system may
then unescape the source code for presentation. Accordingly,
if a module specification is included in data that has been
escaped, a module server or specification server may detect
that the code has been escaped, determine the manner of
unescaping to be used (e.g., based on the source, based on
the type of codes used or other techniques) and then unes-
cape the data to return it to its original form. FIG. 6(4)
illustrates an example of the file of FIG. 6 after it has been
escaped. In this example, the symbol “<” has been changed
to “<” and the symbol “>” has been changed to “>”
and several other changes have been made.

[0064] Similarly, with other alterations or modifications to
the module specification, the module server or specification
server may detect the alteration or modification, determine
how to reverse the alteration or modification or otherwise
output the module specification to its intended form.

[0065] TIllustrative Method of Module Handling

[0066] Once a module has been incorporated into a con-
tainer, when the container is opened or refreshed, a method
may be performed to generate the data from the module for
inclusion in the container. One illustrative method of doing
so may be depicted in FIG. 7 in process 700.

[0067] In block 702, a module reference may be received
from the container. For example, the container for a user
may specify a plurality of different modules that are to be
incorporated. It may indicate those modules by a reference
to the location of the module. If the module is specified as
type URL, then the module is located at a place potentially
remote from the server of the container. According to one
embodiment of the present invention, block 704 and 706
may be provided. In block 704, the status of the remote
module may be determined, for example, by an analysis
module 28. If the remote module is approved in block 706,
then processing may proceed to block 710. If it is not

Jun. 14, 2007

approved, then one or more unapproved responses may be
taken in block 708. In block 710, the server associated with
the remote module reference may be called and the data
received may be evaluated. According to another embodi-
ment of the present invention, block 710 may involve
retrieving the remote module from a cache associated with
the container server. In optional block 712, one or more of
the activities associated with block 704 may be performed to
determine whether the remote module is approved. This may
be desired because as remote modules are under the control
of another party, they are subject to possible change on a
frequent basis. Accordingly, in between the time that a
module is included into a container the first time and the
time which it is displayed a second time changes may have
been made to the remote module that would render it
unapproved.

[0068] In block 714, the data that has been retrieved from
the remote module reference is parsed to identify a module
specification. As discussed above, the data may comprise a
file that merely includes the module specification and there-
fore step 714 is used to extract the module specification from
the data provided. In block 716, the module specification is
parsed to determine how to generate data and in block 718,
data is returned to the container whereby the container when
accessed by a user system or other system opening the
container may be able to view the contents of the remote
module. The various activities associated with parsing the
module specification 716 are provided in greater detail
herein.

[0069] FIG. 8 depicts more details regarding the activities
involved in block 716. Particularly in block 802, the parsing
operation may identify the content type specified in the
module specification and take action appropriate based upon
the content type. For example, for an HTML content type,
the module data is resident on the server. In block 802,
module preferences may be applied if available. Greater
detail regarding module preferences and how they may be
applied are provided below. In block 807, user preferences
may be applied if available. Greater detail about user pref-
erences are provided in greater detail below. In block 810,
based upon module preferences if available, user prefer-
ences if available and the content and content type of the
module specification, data may be generated for delivery to
the container.

[0070] According to one embodiment, the modules may
be created according to a specification. The module speci-
fication may specify elements that are required and those
that are optional. In one embodiment, content type and
content may be required and user preferences and module
preferences optional. Other embodiments may have no
required elements.

[0071] According to one embodiment of the present inven-
tion, a module may be specified by an XML file, placed
somewhere on the Internet where it can be found by a
module server. The XML file that specifies a module may
contain instructions on how to process and render the
module that in turn may then be interpreted by the module
server to render the data. The XML file may contain all of
the data and code for the module or it can have references
(e.g., URLs) for where to find the rest of the elements.

US 2007/0136201 Al

[0072] There may be a plurality of different types of
remote modules: HTML, URIL, and XSLT, for example, or
a smaller list of predefined types as well, such as HTML and
URL.

[0073] For <Content type=“html”>—the body of the
<Content> is html and may be hosted by the host server
system 10. This may be useful for modules that incorporate
JavaScript. In one embodiment, as described herein, the
container may embed untrusted HTML within an IFRAME
for safety. Implementations may also parse the HTML
content and determine that it is safe to display without a
surrounding IFRAME.

[0074] For <Content type="“url” href= . . . >—the body of
the <Content> may be ignored, and the [IFRAME src=points

Jun. 14, 2007

to the url specified in the href attribute. This may be a useful
content type for server-side dynamic content generation. In
one embodiment, a url type may be served in an IFRAME.
This enables the container system to obtain cookies from the
site serving the data at the URL, parse user preferences
correctly and other advantages.

[0075] For <Content type="xslt” frame=yes|no href= . . .
>—body of the <Content> may be an XSLT stylesheet
which is applied to the content located at the URL specified
in the href=attribute. Again, the default for this type of
module may be IFRAME presentation as one way to protect
against malicious HTML/JavaScript.

[0076] One example HTML module is shown below:

Line

Explanation

<?xml version="1.0"
encoding="UTF-8"?>

<Module>

<Content type=“html”><![CDATA[

Hello, world!
1]></Content>

standard way to start XML files

indicates that this XML file contains a module for use
with a container document

indicates that the body of the <Content section contains
HTML

the actual HTML

end of the Content section

[0077] According to one embodiment, a module may have
a content section as shown below.

<Content type="“html|”>

<[CDATA[

. . . place where module create places HTML (or other browser recognizable code)

1>

</Content>

[0078] Module preferences may be optional per-module
configuration information, such as preferred sizing, title,
author, and so. For example,

<Module>

<ModulePrefs title=“Today’s place on the Internet Traffic”

title_ url="http://www.placeoninternet.com/stats/” height=<200" author="Robert Smith”

author__email="rsmith@placeoninternet.com” />

<Content . . . >

..content ...

</Content>

</Module>

US 2007/0136201 Al

[0079] An example table of module preference attribute

<ModulePrefs . . . > names may include:
Name Description
title Optional string that provides the title of the module. This

title is displayed in the module title bar on the user’s
personalized home page.

title_url Optional string that indicates where the module resides.
descript- Optional string that describes the module.

ion

author Optional string that lists the author of the module.
author_ Optional string that provides the module author’s email

email address.

author_ Optional string that specifies one or more affiliations for the
affiliation author (e.g., Google or Joe’s Module Developer, Inc.).
height Optional positive integer that specifies the height of the area
in which the module runs.

Optional boolean that specifies whether the aspect ratio
(height-to-width ratio) of the module is maintained when the
browser is resized. Modules that can automatically scale
vertically may elect to set this to true, but modules which
have a fixed height should set this to false. The default may
be true.

Optional boolean that provides a vertical and/or horizontal
scrollbars if the content exceeds the space provided. If false,
then the content is clipped to the height and width provided.
The default may be false.

render Optional string that indicates whether module may be

inline displayed inline

scaling

scrolling

[0080] Also within the <ModulePrefs> preference
attribute, a <MayRequire . . . > element may specify
information for compatibility and may be displayed in the
directory. This information may also be used for attribute
searches of modules. It may be used to provide information
or validated by software within the analysis module for
accuracy. In one embodiment, this attribute may be used in
presenting modules in search results or browsing to enable
users to understand what the module may need to operate in
the way the module creator intended.

[0081] For example, one module that requires QuickTime,
a WINDOWS platform and a Firefox browser may provide
the following module preference attribute values.

<ModulePrefs . . . >
<MayRequire type="plugin” value="quicktime” />
<MayRequire type="browser” value =“firefox” min_ version="1.06" />
<MayRequire type="platform” value="windows” />
this is a detailed explanation of windows
</MayRequire>
</ModulePrefs>

[0082] Predefined values for type and value attributes may
be specified, which may be updated over time to include
additional possible values. A type=other may be provided as
a catch-all.

[0083] If multiple MayRequire elements are provided, a
logical OR may be used to interpret multiple attributes of the
same type and a logical AND may be used to interpret
multiple attributes of a different type. For example, multiple
browsers may be specified and the interpreter understands
that any of the specified browsers may be used. If a browser
attribute and a plugin attribute are provided, the interpreter
understands that both may be expected (the logical AND). It

Jun. 14, 2007

is also possible to use an attribute that specifies what a
module will not operate with.

[0084] Also within the <ModulePrefs> attribute, a
<Locale . . . > element may allow a developer to specify a
country and/or language for which the module is designed
It may be specified as <Locale lang=" . . . ” country="

7>, Semantlcally, this may be 1nterpreted to indicate that the
module is acceptable for users who have specified that they
prefer this language and/or are located in the specified
country. This may assist a container server in complying
with legal restrictions. For example, if a country precludes
certain types of information from being offered for sale, a
sale module may detect the locale preference to present
those items for sale only in countries where it is legal. It may
also be used for directories and searches to hide or rank
modules based on user detected or specified locale. In
addition, it may be possible to provide an optional attribute
for a code, which may allow specification of a standardized
code, such as an ISO 3166 code. In this variation, specifi-
cation of such a specific code may override language and
country attributes if present.

[0085] Providing values for “lang” and “country” values
may be optional. If one is missing, it may be interpreted as
an ALL value (i.e., all languages for a specified country or
all countries for a specified language).

[0086] In one embodiment, if no locale data is specified,
then the interpreter may assume one country and language
(e.g., US and English) or a predefined set of countries and
languages. Shorthand values may be used as well, such as
known two-digit values for countries (e.g., NZ for New
Zealand, MX for Mexico, etc.). The list of countries may
also be determined, such as by scanning content for certain
words, strings, characters, etc. that are characteristic of
certain locales, looking at the author information or other
possible choices. Shorthand values may be used as well,
such as known ISO two-character representations of coun-
tries (e.g., NZ for New Zealand, Mx for Mexico, etc.).

[0087] The reader_inline attribute may be an optional
preference. In one embodiment, predetermined values may
be provided including “required” which means the module
must be inlined to work properly; “never” which means the
module will not work properly if inlined, and “optional”
which means it will work either way.

[0088] In other embodiments, it may be desirable to cache
module specifications that would ordinarily be available
from a specification server remotely located over a network
from the module server. For example, if a specification
server is operating on a slower connection its transmission
of'the module specification may cause the generation of data
for the container document to be slow or unavailable.

[0089] Thus, a caching element in the module preferences
may set one or more attributes that indicates the caching rule
to be applied. For example, for modules of url type, a cache
rule preference may specify attributes including a size
element (e.g., cache the module content only when the
screen size is identical, otherwise reload). This may be a
default caching behavior for modules that do not want the
user identification to be specified. Another attribute may be
based on a “user” value (e.g., cache the content per-user
only, for any rendering dimensions). Another attirbute may
be based on a “user,size” value combination (e.g., cache the
content for a given user and given screen dimensions only).
This may be the default caching behavior for modules of a
url type and that accept a user identification. Also, an age

US 2007/0136201 Al

attribute may be specified such that modules may be cached
for a certain period of time. The value of this attribute may
be the maximum number of seconds to cache the content.
This number may be suffixed with “s” for seconds, “m” for
minutes, “h” for hours or “d” for days. For example,
<ModulePrefs CacheMaxAge=45d> would allow caching
for 45 days. For example <ModulePrefs CacheMaxAge=0>
effectively disables caching. The default value may be
infinity, which can be explicitly specified with “CacheMax-
Age=infinite.”

[0090] Modules may comprise “small” versions of appli-
cations suitable for containers such as personalized home
page(s), HTML emails, portable digital devices (PDA’s),
telephones, cell-phones, interactive media devices, video
game consoles, television overlays, etc. or any other device
configured to display content based on a format (e.g.,
HTML). With a small screen size, the application may be
adapted to be more concise and less cluttered with promo-
tions and ads, etc. Sizing may be achieved through module
preferences, with different output devices having different
preferences, for example or the module specifying how to
behave on different output devices that render the data for
display.

[0091] For example, to fit a module to the size of the
window it is given, the module may specify a height (in
pixels) using <ModulePrefs . . . height=200">. Also, if a

Jun. 14, 2007

in the sense of able to response to events (including timed
events) and able to interact with the system (e.g. including
changing its state). Also, the system, end user or module
may control the visibility of the module, either the “default”
visibility, or the visibility under a variety of circumstances,
e.g. define states such as “active.” Illustrative examples
include a weather module that remains minimized (for some
definition) until there is unusual or extreme weather. A traffic
module could remain minimized until a relevant traffic alert
occurs. A stock module may display only stocks with
changes greater than a predetermined percentage. A fantasy
football module may be only active on weekends or within
a predetermined period of time of the first game. The user
may have the option to manually override these preferences
from a menu, for example. Also, as another example, an
email module may size itself to reflect emails deemed
important by some criteria.

[0093] Many modules may elect to access large databases
and dynamic services hosted elsewhere on the Internet. For
security purposes, browsers typically require that any Java-
Script “come from” (<script src=. . . >) the same host as the
content it retrieves. Therefore, a module using such a
technique may co-locate the JavaScript source files and the
services the JavaScript code accesses. For example, here is
a working Google Maps module, which uses the Maps API:

<Module>

<ModulePrefs title="Map of_ UP_loc__ " height="300" author="John Doe”
author_email="jdoe@emailaddresse.com” />
<UserPref name="loc” display_name="Location” datatype="location” required="true” />
- <Content type="htm|”>
- <!|[CDATA[
<script sre="http://maps.google.com/maps?file=js”
type="text/javascript”></script>
<div id="map” style="width: 100%; height: 100%;”></div>
<script type="text/javascript”>
var prefs = new _IG_ Prefs(_ MODULE_ID__);
var map = new GMap(document.getElementByld(“map”));
map.addControl(new GSmallMapControl());
map.addControl(new GMapTypeControl());
/alert(prefs.getString(“loc.lat™) + ” + prefs.getString(“loc.long™));
map.centerAndZoom(new GPoint(prefs.getString(*“loc.long”),
prefs.getString(“loc.1at™)), 6);

</script>

11>
</Content>
</Module>

module does not fit in the size provided, scrollbars may be
automatically added if <ModulePrefs . . . scrolling="true”>.
[0092] Module preferences may thus be used to enable
module creators to specify screen dimensions, visibility
state—e.g., full, minimized-titlebar-only, minimized-visible
(e.g., visible icon on bottom or in a toolbar), minimized-
invisible (e.g. only available from a menu) or closed. In all
visibility states, the module may be still “on” the user’s page

[0094] In connection with this example, a userpref
datatype=location should geocode (i.e., turn a string into
latitude and longitude).

[0095] Many modules may accept user preference infor-
mation—for example, a weather module may expect to
receive the postal code(s) the user wants to watch. An
example module with user preferences expected is shown
below.

<?xml version="1.0" encoding="UTF-8” 7>

<Module>

<ModulePrefs title="Weather Map” title_url= “http://www.internetplace.com/weather-
map.htm!” height="260" />

US 2007/0136201 Al

-continued

Jun. 14, 2007

<UserPref name="loc” display_ name="Location” datatype="location” />

<Content type="url” href="http://www.internetplace.com/weather-map.html />

</Module>

[0096] If e.ither .the user changes the module URL, or the -continued

module specification changes, any previous user values may

get out-of-sync with the new module spec. To resolve this, Name Description

the server may choose to pass preference values anyway. str__maxlen Optional numeric value that specifies a maximum string

Old user preferences may be deleted, ignored or also passed
along where the specification server may ignore them.
[0097] An example table of user preference attribute
names includes the following:

Name Description

name “Symbolic” name of the field; displayed to the end
user during editing if no display_ name is defined. In
one embodiment, the name field may use only letters,
number and underscores, i.e. the regular expression
"[a—zA-Z0-9_]+$. In other embodiments, other
designators may also be used.

Optional string to display alongside the user prefs in
the edit window

display__name

length for this user pref.

[0098] Among these preferences, some modules may have
logins and other authentications to obtain the data. This
information may be passed to the specification server
through the preferences. Other techniques may also be used
to facilitate these systems, including creating special user
preferences for certain module creators, anonymous user
identifications passed to the specification server, placing
cookies in an IFRAME for the specification server, per-user
login screens and other such techniques.

[0099] A JavaScript preferences interface may be included
with a JavaScript-based module to obtain user preference
passed in. This interface may comprise a plurality of Java-
Script functions including the following:

Description

__Container_ Prefs(moduleld) The preference constructor. It takes a module ID as an

argument. E.g.: var prefs = new
__Container_ Prefs(MODULE__ID);

Retrieve the user preference identified by name as a String
value.

Retrieve the user preference identified by name as an
Integer value.

Retrieve the user preference identified by name as a
Boolean value.

Retrieve the current module height in pixels.

Retrieve the current module width in pixels.

Retrieves a unique userld for the user.

For debugging, uses document.writeln() to display all of the
available preferences.

urlparam Optional string name to pass as the param name for
content type=url
Name
getString(name)
getInt(name)
getBool(name)
getModuleHeight()
getModuleWidth()
getUserld()
dump()
-continued
Name Description
datatype Optional string type name (defaults to “string™) that
indicates the data type of this field. The options may
include “string,” “bool” and “enum”
required Optional boolean argument (“true” or “false”) indicating

whether this user pref is required.

Optional string value to provide as this user pref’s

default value.

Optional numeric value that indicates the minimum

allowed value for this user pref.

Optional numeric value that indicates the maximum

allowed value for this user pref.

cdata Repeated string value, in which each string is HTML.
It may represent the optional data between preference
tags.

default_ value

num__minval

num__maxval

[0100] In addition, information related to preference pro-
tocols may be used as well. For example, container prefer-
ences, module preferences, user preferences, syndication
recipient system preferences and users of the syndication
recipient system may specify preferences that might apply to
a module. A protocol may be established that determines
which preferences take precedence over others if a conflict
exists. For example, if a container limits a module to
100x120 pixels and a module preference indicates that the
module should be larger than that, the container preference
may override the module preference. Or, if different time
zones apply to the container, the user system and the
syndication server, the time zone of the syndication server
might override a user preference. Other protocols are also
possible.

US 2007/0136201 Al

[0101] The content section in the remote module XML file
contains information about the module’s content type. For
example:

<Module>

<ModulePrefs . . . />

<Content type="url” href="“http://www.placeontheinternet.com/cgi-
bin/asah/modules/igstats.cgi” />
</Module>
JavaScript example:
<Module>

<ModulePrefs . . . />

<Content type="“htm|”>

<!/[CDATA[<script language=*JavaScript”

sre="http://www.placeontheinternet.com/igoogle/modules/clock/
clock.js”></script>

1>

</Content>
</Module>

[0102] The content section can also contain pure HTML.
An example table of module preference attribute names is
shown below:

Name Description

type Optional string that gives the type of the content. The possible
values may be “html,” “javascript,” “xslt,” and “url” for example.
The default is “html.”

href Optional string that provides a destination URL. The default value
is “”.

cdata Optional string that indicates that the data generation portion of the
specification follows.

[0103] Many modules may be CGI-based front-ends to
other services. To set up a CGI script, the user may create a
directory, copy an example CGI script into it, and test the
CGI script.

[0104] Scalable Vector Graphics objects (e.g., Macrome-
dia FLASH, MPEG4, etc.), video players, audio players, and
the like may be part of a module by wrapping the code for
the object with HTML that refers to and invokes it. The
module server may check for this information and determine
a module to be untrusted based on inclusion of a flash object
and thus serve it in an IFRAME. It is also possible that such
modules may be deemed safe and rendered inline.

[0105] Module creators may update modules. Accord-
ingly, the module creator may have several options for users
to learn about and/or begin using the newer version of a
module. For example, the module creator may provide a new
version of a module in the same location, thus forcing users
to upgrade to the new version when the container includes
a reference to that location. When a call is made to retrieve
a module specification at that location reference, the speci-
fication of the new version may be retrieved. If a module
creator and/or user does not want to have new versions
mandatory for the users, then a new version may be made
available at a different location reference in the Module
Prefs. Users may then be notified through various mecha-
nisms that a new version is available and provide them with
the new location reference (e.g., URL) to use in identifying
the newer version of the module in a container document.
For example, the module creator may publish to a new

Jun. 14, 2007

version to a new reference locator (e.g., URL), then modify
the old location reference (e.g., URL) to provide notice to
users of the upgrade.

[0106] In addition, in various embodiments, the module
specification may include a field or a preference that enables
a module creator to indicate that a new version of the module
has been created. The module server may then identify an
indication that a new version is available during the parsing
process and modify the module data output (e.g., annotating
the module titlebar with an indication such as “upgrade
available,” with a link to a confirmation window, which
upon confirmation updates the user’s module location ref-
erence in the container document to the newer version). For
illustrative purposes, module 105 in FIG. 2 includes a
selection “upgrade available”1054a. Other methods of modi-
fying the module data output to notify and/or accept input
related to a user selection to upgrade to the newer version
may also be possible based upon the inclusion of informa-
tion in the module specification. In addition, it may be
possible to provide a selection to enable the user to return to
a previous version. For example, some users may not like an
upgrade or the upgrade may have performance issues (e.g.,
bugs, etc.). Thus, the module server may automatically (or
based on an input in a module specification) present an
option to a user to return to a previous version. For illus-
trative purposes, module 106 has been provided with an
“undo upgrade” selection 106a. This may be done for a
predetermined period of time, until another upgrade is
available or indefinitely. Indeed, repetitive selection of
“undo upgrade” may return the selection to several versions
earlier of' a module.

[0107] Information related to location references of earlier
versions may then be stored and accessible to the module
server and/or be stored in the module specification to enable
those location references to be used.

[0108] In various embodiments, specification server 16
may thus run a local web server (e.g., Apache server) or use
a managed hosting facility which typically provides faster
connection responses. By default, module content may be
presented in an IFRAME hosted on a domain separate from
the domain of the container server. For example, the
IFRAME may be hosted by the same or different container
server but served from a different host name (or IP address)
in the URL. This may help protect users from malicious
modules that might (for example) attempt to “steal” any
cookies associated with the domain of the container server.

[0109] A host server system may not want to include
untrusted HTML inline without precautions. A malicious
module if rendered inline may read or modify cookies,
including authentication credentials, set by the host server
system. The malicious module may also read or modity the
container (e.g., personalized homepage associated with the
host server system). It may also utilize phishing (e.g.,
imitating a login box) or code that replaces the entire page
(via document.location) with a phishing site that looks like
the personalized homepage. It may also utilize undesired
pop-ups, dialog boxes or infinite looping codes. A malicious
module could also pass information to IFRAMEs, which
may then generate any of the foregoing problems in the
IFRAME.

US 2007/0136201 Al

[0110] Thus, according to various embodiments, the con-
tent may be placed in IFRAMESs. As an additional level of
security, the content in the IFRAME may be served on
numeric [P addresses.

[0111] Another level of protection may involve HTML
type modules utilizing a library of scripts that hide user
preferences from being generated in the output HTML in the
container.

[0112] In addition to use of IFRAMEs to render data of
modules, other security features may be utilized. For
example, users of the container page may be requested to
acknowledge risks when adding untrusted modules to the
container page. Also, untrusted models may be indicated in
some manner (e.g., visual demarcation, such as a colored
border). In addition, various functions may be disabled in
the IFRAME, such as the JavaScript alert(), confirm(), and
prompt() functions, which may be accomplished, in one
embodiment by inserting dummy function definitions (e.g.
function alert() {;}) before the actual content. Because an
additional IFRAME in the content could be used to circum-
vent this disabling, the container may refuse to include a
module that includes an IFRAME or uses the JavaScript
evalo function.

[0113] Tlustrative Inline Generation Process

[0114] According to various embodiments of the present
invention, it may be desired to present the content of a
module inline of the container. There are risks associated
with inlining content into the container as discussed herein.
Accordingly, it may be desired to enable a module to
become inlined a container upon becoming “trusted” by the
system.

[0115] A module may be deemed trusted according to
various techniques including if the module uses HTML and
other codes that have been statically proven to be safe
through various known techniques.

[0116] Another method of achieving sufficient level of
trust for the system might involve a methodology based
upon digital signatures. One illustrative example methodol-
ogy may be depicted in FIG. 9. This process 900 may
involve a number of one or more blocks. In block 902, a
digital signature may be created. Various functions and
techniques for creating digital signals are known and may be
used herein. One such system takes various data as an input
and randomly generates based upon those input a series of
numbers that are unique for the particular purpose (i.e., no
two people have the same digital signature).

[0117] The digital signature may be provided by the
container server and/or host server system based on a
validation of the module. In one embodiment, content of a
module may be validated only if it does not include any
external content such as IFRAMEs or javascript “src="
statements. In validating or certifying a module, it may be
manually inspected by a person associated with the con-
tainer server and/or host server system or a person approved
by those operators.

[0118] In block 904, the creator of a module may incor-
porate that digital signal into the module. In block 906, the
creator of the module may update that module design
specification with code that indicates that the module sup-

Jun. 14, 2007

ports inline generation. When this occurs, the module when
rendered by the container server is presented inline with the
container.

[0119] To avoid conflicts with other instances of the
module on the user’s screen, _MODULE_ID_may be added
to all HTML names/IDs and to all JavaScript functions and
global variables. For example, var myvariable=5; becomes
var myvariable. MODULE_ID__ =5. At runtime, all _MOD-
ULE_ID_strings in the module content are replaced at
runtime with a unique id for that module, even for untrusted
modules.

[0120] User preferences may be accessed from an
IFRAMEAd or inlined module using a preferences interface
described below.

<script>
// May be constructed using the _ MODULE_ID___ token. It may
// get replaced at runtime with the actual ID of the remote module.
var prefs = new _Container_ Prefs(_ MODULE_ID__);
var someStringPref = prefs.getString(“StringPrefName”);
var somelntPref = prefs.getInt(“IntPrefName”);
var someBoolPref = prefs.getBool(“BoolPrefName”);

</script>

[0121] To allow both inlined and IFRAMEd modules to
use the same interface to get their container dimensions (for
resize events), both may be placed in an artificial <div>.

[0122] Tllustrative Preference Storage

[0123] According to another embodiment of the present
invention one of the elements of data stored in databases 20
may comprise preferences. In particular, for each user of the
system that has a personalized container document, prefer-
ences may be stored. In addition, preferences may be stored
in association with one or more modules in the personalized
container of the user. According to one embodiment, the
system may allocate a large volume of storage for prefer-
ences for users.

[0124] FIG. 10 illustrates an example of preferences for
two users. In this example, one user, Bob Brown, which may
be a username rather than a real name, has three modules
designated for inclusion in his container. Each module may
be identified by an identifier (e.g., a numeric identifier or
index to a database where the data is stored) and a location
reference. In this instance, the location reference is a URL of
an XML file located at a website on the Internet. In addition,
for this particular module, various preferences may be
stored. In this instance, the preferences have been stored as
follows: his name which equals Bob, his favorite color
which equals blue, and his favorite sandwich which equals
reuben. These preferences may be stored based upon the
module specification for the module at www.smith.com.
Specifically, the smith.com module may specify that pref-
erences may include the name, address, and age. In one
embodiment, only the preferences specified in the module
specification may be stored in the preferences database. In
another embodiment, all preferences that the user has pro-
vided may be stored in association with this module entry in
the preferences database. For example, if the Smith.com
module specification only calls for name and color prefer-
ence information but used to also call for sandwich infor-
mation, it is possible that the preference entry for this
module may save the age information. When that informa-
tion is passed to the module, the module may simply ignore

US 2007/0136201 Al

that preference information because it is not used by the
module. Also the system may track the preferences associ-
ated with the module and delete any preferences that have
been stored in association with that module from the pref-
erence database that are no longer relevant.

[0125] As FIG. 10 illustrates, entries may be provided for
each user that accesses the system to receive a personalized
container. In addition, whereas this FIG. 10 illustrates that
the preferences may be duplicated for each module (e.g.,
name equals Bob is stored in association with each of the
three modules for Mr. Bob Brown) it is also possible that
preferences may be stored in a global table associated with
the user with references made to the modules to which they
apply. Any other techniques for storing preferences in asso-
ciation with the various modules to be included in the
container for the user may also be used within the scope of
the present invention.

[0126] According to one embodiment, another security
feature may be implemented with relationship to preference
storage. In particular, because preference values for users
may be stored for various modules, it is important that one
module not be able to modify preferences to be used for
other modules, unless that is desired by the users and/or
module creators (e.g., two modules that operate together,
such as a maps module and weather module that show a
weather map imposed on a street map based on a commonly
supplied user zip code preference).

[0127] Accordingly, to set preferences, in one embodi-
ment, the module server may include a token in the
IFRAME or code of a module in HTML. For an inline
system, the token may comprise a digital signature since the
module and user may already have been deemed to be
trusted. Inlined modules may then modify other modules,
the container or itself.

[0128] For IFRAMES that may be provided on less trusted
modules, the IFRAME may be served on a numeric IP
address without cookies associated with the container server
and any associated credentials that may be included in the
cookies (in contrast to an inline presentation where any
cookies set by the container are accessible to the module
running inline on that page, including cookies that might
include a container user identification and/or module iden-
tification).

[0129] Thus, for an IFRAME presented module, a token
may be generated that includes information about the con-
tainer and/or module and/or user. Thus, the [FRAME may be
provided with a module identification (e.g., the index of the
module being displayed) and/or a container user identifica-
tion (which may be encrypted).

[0130] A token may be passed to the IFRAME and the
module may then be expected to pass back that token with
any request to modity, add or remove preferences. The token
may be generated according to known token techniques, but
one illustrative example is calculated as follows: Here K1
and K2 may be secret alphanumeric characters to the server.

[0131] Data=Encrypty;(Compress(ContainerUserld+
Moduleld+Timestamp))

[0132] Signature=HMAC,,(Data+ModuleUrl)
[0133] Token=Data+Signature

[0134] When a request to modify, add or remove a pref-
erence is received, the module server may decrypt the data,
validate that the timestamp is within a predetermined period

Jun. 14, 2007

of time of issuance (e.g., 15 minutes), look up the container
user identification and module identification, calculate the
signature and encrypted data and then use the module
identification to update the preferences if everything
matches and all requested update parameters refer to the
correct module identification. A module identification may
be generated for each version of a module as well. Thus, the
module location reference may not be passed in the token,
but may be used in the calculation to generate the encryption
(e.g., HMAC encryption).

[0135] The timestamp may be used to provide additional
security. It may serve to limit the damage that could be done
if an unauthorized user was able to decode the token on a
particular instance. Everything in the token may be
encrypted for additional safety, although lesser levels of
security may also be used.

[0136] For example, JavaScript in a module may be cre-
ated to programmatically store preference information for
the user/module through use of the token system. Such a
module may, with a valid token (e.g., within the time stamp
range accepted), pass data to the preference storage without
the user having to indicate. For example, a module that
provides tasks for a user may automatically upload newly
added tasks to the preference storage upon entry of the new
task through the module. The task list then may be stored at
the preference storage.

[0137] According to another illustrative example, prefer-
ence information may be used to generate data from one or
more remote modules and that information may then be
supplied to another remote module. For example, preference
information related to one or more geographic locations may
be stored. Those one or more geographic locations may be
provided to remote modules to generate information that
may be supplied to map server 39. Map server 39 may then
generate a map overlayed with data based on the geographic
location information, including locations of places, images
of places and the like. Also, map server 39 may obtain this
information and provide it to another remote module that
may generate mapping output or other output.

[0138] In one specific example, a string such as San
Francisco, Calif. may be provided in preference information.
That string may be converted to a geocode location using
geocode server 37 and passed to a remote module. The
geocode location may comprise a latitude and longitude
value. The remote module may generate data for a map
server to display a world map highlighting San Francisco,
Calif. on the map. If other preference information, such as
“restaurants”, is provided, then restaurant locations near San
Francisco may be shown on the map. Many other examples
are certainly possible within the scope of the present inven-
tion.

[0139] Tllustrative Proxy Server Collection System

[0140] According to another embodiment of the present
invention, through utilizing a module that is incorporated
into a container document a method for collecting data from
a target site and reformatting it in a manner desired for
display by the user may be realized. For example, suppose
a user is an avid fan of golf and frequents a golf website
regularly. But the golfer is only interested in articles and
information about how to play golf and not about events
related to the PGA tour and other professional golfing
events. A module may be designed with a script that collects

US 2007/0136201 Al

data from the golf site applying code that modifies and
manipulates the data collected from the golf website to
generate the data for presentation in the container. The code
used by the module to collect the data from the golf website
may be viewed by the golf website as a robot or other
unapproved access method. This may be true particularly if
the request would have been originated from a source that is
unfamiliar to the golf website. For example, if the creator of
such a module were a unknown operator of a website, this
request may be blocked or otherwise precluded by the golf
website.

[0141] The operator of the host server system may be a
known entity to the individual golf site or to the community
at large. Accordingly, requests for data from this site would
not ordinarily be precluded. To utilize the trust associated
with the container site a proxy server may be used to act on
behalf of the module creator system to request the informa-
tion from the golf site (e.g., the target collection site) by
using a server associated with the host server system (the
proxy server address). The information from the golf site
may then be received by the module creator system, manipu-
lated into a format desired by that module creator, e.g.,
removing all articles on a page related to the PGA tourna-
ment, highlighting information about amateur golfing,
replacing names of terms in the text to suit the module
creator (replacing 7 iron for mashie niblik), rearranging the
content in the page to suit the module creator or any other
modification, replacement, substitution, deletion, addition or
action the module creator wants to apply to the data from the
target collection site.

[0142] One illustrative embodiment of such a system is
depicted in FIG. 11. FIG. 11 should be understood in relation
to FIG. 1 in that the placement and relationship between
elements as described in relation to FIG. 1 should apply to
FIG. 11 as well. As shown in FIG. 11, a proxy server 52 may
be provided that may operate in conjunction with module
server 32 and container server 12.

[0143] A specification server 24 may operate as the mod-
ule creator system 54 as well. In addition, a target content
server 56 is depicted. As discussed above, in one embodi-
ment, a module specification may be stored in a place
accessible to specification server 24. When a container is
opened by container server 12, a target collection module
may be identified. Module server 32 may then be called to
provide the data for the module. Module server 32 may
determine that the specification server is located at a location
of specification server 24 on the network. The code for the
target collection module may be retrieved by module server
32 from specification server 24. That code may then be
delivered to container server 12 to display to the user. User
system 22 may open the module and, based on code in the
module data, transmit a request for data from proxy server
52 to retrieve data from target content server 56. The data
from target content server 56 may be provided to proxy
server 52 and then provided to the user system, where
additional code in the module may modify and/or manipu-
late that data based on the code in the module. Any modi-
fications or manipulation to that data may occur at specifi-
cation server 24 and then the data may be provided to
module server 32 to provide to container server 12 to
generate data to the user.

[0144] To avoid the proxy being used as an open proxy,
which many systems on the Internet disfavor, proxy server

Jun. 14, 2007

52 and the browser systems may employ an authentication
technique, such as the use of a token, as described above
related to updating preferences. Proxy server 52 may per-
form requests when a specified and valid token is passed
from the user system, because it was part of the module code
provided to the user system. In addition, caching both on the
proxy server and the user system may be used to expedite
delivery of data and reduce the number of calls made to the
target site server.

[0145] 1t should be appreciated that proxy server 52 may
also connect to other systems over the Internet. In one
embodiment, proxy server 52 may utilize an address asso-
ciated with and/or approved or authorized or certified by
host server system 10 to leverage the reputation of host
server system 10 so that target content server 56 may
respond with data.

[0146] An illustrative proxy method 1200 is depicted in
FIG. 12. In block 1202, a container document may be
opened. In block 1204, a module may be identified that
includes code to collect data from a target site. In block
1206, module content is transmitted in HTML to user by
module server 32. In block 1208, a user system (e.g., a
browser) interprets the HTML including the code (e.g., the
JavaScript to collect and manipulate data) to collect data
from the target collection site. In block 1210, the user system
passes a request for collection of target site data to the proxy
server. It should be noted that many browsers will not act on
scripting language (e.g., JavaScript) that calls a server that
is different from the server that sends the underlying HTML.
Thus, because the proxy server and container server may be
associated with a common source, the browser proceeds
with the request.

[0147] In block 1212, the proxy server collects data from
the target site and transmits it to the user system. According
to one illustrative embodiment, a program referred to as
trawler may be used to collect data from the target site. Such
a service typically respects the so-called robot exclusion
information and host load issues, similar to techniques used
to cache web page data used by web search engines. In block
1214, the user system manipulates data collected from the
target site based on code in the module specification and
generates display data based on the manipulated target site
data. In block 1216, the user system displays a container
document with manipulated (optional—the data could be the
target site data without manipulation) target site data in
format specified by the module.

[0148] According to another embodiment, proxy server 52
may be operatively connected or include an analysis module
26 that performs the functionality described above in the
context of proxy requests. For example, proxy server 52 and
analysis module 26 may analyze requests against a list of
disapproved sites, disapproved actions, disapproved content,
etc. In addition, the requests may be compared against
approved site, actions, contents. The evaluation may be
based on the location reference (e.g., URL) or the target site,
the format of the request, the preference values to be
provided to the target site, time, user information, module
specification source, requesting system or any other input.

[0149] According to other embodiments, the module
specification may provide instructions that may control the
proxy server. Proxy server 52 may use those instructions for
operation. One instruction may indicate how the proxy

US 2007/0136201 Al

server should obtain the data from a target site, such as by
serving a fresh copy rather than using a cached version.
Another instruction may control the cache and its operation,
including indicating when the clean the cache or update the
cache.

[0150] According to another embodiment, the target sites
may be able to control the proxy server operations or at least
provide indications as to how it would prefer that the proxy
server operate. A robot exclusion file (e.g., robots.txt) may
be included indicating how proxy server may operate or that
the proxy server may not collect data at all. Proxy server 52
may respect instructions provided by the target site. Mega
tags may also be provided by the target sites. Other manners
of providing instructions may also be provided.

[0151] The instructions provided may indicate to proxy
server 52 a number of things, including a refresh rate,
attributes as to when or for whom proxy server 52 may
collect content (e.g., a list of users, module specifications
(by URL or otherwise denoted), types of data to be collected,
etc.).

[0152] According to various embodiments, the modifica-
tion to the data may include taking data from multiple target
site sources to merge results into a module output. For
example, a module may take a data feed from a news source
and merge it with content from a blog into a single output.
Examples may include formatting, transforming and/or
reformatting RSS/Atom data feeds into an HTML output;
collecting webpage HIML to create a module, e.g., for
prototyping, “mashing up” content from multiple web pages
and/or data feeds, applying internationalization to content,
transcoding content, cleaning up “busy” content for easier
presentation, including multimedia content with other forms
and the like. Specific illustrative examples might include
taking a RSS feed from a newspaper source, changing the
font and adding the newspaper’s logo; bolding headlines that
mention a specific key word or phrase, including a fictional
article periodically, turn place-names into mouse-over maps
in data feeds, take data from a relatively active web site and
create a module that contains essential links and/or features
that a user selects and many more.

[0153] One illustrative example of a container document
that includes data generated through modification of proxy
data is depicted in FIG. 13. There, a horoscope module is
included in the container document that includes data col-
lected from a horoscope RSS and then modified with text
specific to the user. Another proxy server example is
depicted in the “news” module in which news, weather and
maps may be included. Here, text from a news source has
been collected with the term “George Bush” highlighted in
the resulting information collected.

[0154] Through the use of a proxy server and/or process as
described, various advantages may be realized. The modules
may be generated for users in a way that it is readily usable
by user systems, such as browsers, without a download
being required (although a download of software is certainly
possible within the scope of the present invention). Users
may be able to discovery content through distribution of
modules that incorporate them and promotion of them on
various locations. Creating a module using proxy techniques
may be readily done through a set of tools that the system
may publish. Further, providing a scalable back-end server
for proxying and storing user preferences also provides users
with the benefits of these modules.

Jun. 14, 2007

OTHER ILLUSTRATIVE EXAMPLES

[0155] Accordingly, various embodiments of the present
invention enable third parties to a host server system to
create modules that are used on containers served by one or
more host server systems or syndicated by one or more host
server systems. These modules are created according to a
specification that may be easy to understand and apply.
Complex modules may be possible, e.g., https, authentica-
tion, support for resizing, access to built-in libraries, etc. and
remote content creators may be able to develop and debug
modules without downloading or learning a software devel-
opment kit (SDK). In some embodiments, a standardized
platform, such as XML, may be used and thus, the actual
code used may be any that may be interpreted by the user
systems that eventually will display data related to the
module. For example, support for JavaScript and other
languages, including more and richer libraries, documenta-
tion and example modules, and better debugging facilities
may be provided.

[0156] For example, code may be generated for modules
that performs custom rendering for RSS/Atom feeds. RSS/
Atom is a technique to publish read-only content to the web,
and many modules used on container pages are often read-
only with links to pages offering richer interactivity. More-
over, host server system 10 may maintain data about mod-
ules to enable reporting on their use. This may include
information about each individual use of the module, history
of the module, modifications to the module, syndication of
the module, accounting information related to monetary
values and agreements related to the module and many other
types of information that may be useful for reporting on the
module.

[0157] Additional module types may be created as well,
including an XHTML type or modules from other systems
may be possible. Additional example modules that may be
created include a module that takes RSS information and
renders it into a format for inclusion in a container, including
data from photoblogs, for example. Other modules may
include an email reader for popular web-based email sys-
tems, such as Gmail, AOL Mail, MSN Hotmail and Yahoo!
Mail. A module may be created to incorporate chat data and
instant messaging data. Simple applets may be incorporated
into modules such as clocks, calculators, notepads and the
like. Other modules may be created that operate as an
interface to online marketplaces for buyers and sellers of
goods, such as eBay, Amazon and other online marketplaces.
Modules may also be created for internal data for various
entities. For example, intranet services of an entity may be
rendered into modules for inclusion in a container.

[0158] The use of these modules may involve users trad-
ing the URLs of module specs, e.g. through search engines,
email, etc. In addition, an interface may be possible that
allows various features to be added to a container through
input of a request on another page. For example, on a golf
site, there may be a link or button that says “add as a module
to a container.” The container may be specified in advance
or may be input from the user. That link or button would be
operated based on code included by the creator of the
underlying page as a way to have users include that content
on their container, such as their personalized home page.

[0159] In addition, an index of modules may be created
through providing of module information to a search system,

US 2007/0136201 Al

such as when the container document retrieves a module
specification, it may be passed by the container server to the
search system.

[0160] Further, a feedback module may be provided to
collect feedback, statistics, and other data regarding mod-
ules, including information provided by users of modules,
container document providers, target site operators and other
parties involved in the system and/or network. This infor-
mation and data may be presented to users through a ranking
module or other module. A ranking module may rank
modules based on feedback, approval, use, statistics or other
criteria and may include a ranking based on user or editorial
commentary.

[0161] Also, modules may be proposed based on input
about the user or container page, including search history,
keywords in documents viewed, etc. Other techniques may
be used to promote modules for syndication as well.

[0162] In another illustrative example, a module may be
created that, based on a determination that it is trusted,
modify the container document to allow the user to person-
alize certain elements of the container document (e.g.,
adding the user’s name, image, features, logos, etc.).
Another illustrative example module may obtain a list of
other modules on the container page through interaction
with the container page and obtain metadata about them,
including, for example, the ability to modify the module(s),
obtain user preferences for them. A developer module may
be developed to inline or IFRAME other modules for testing
purposes, refresh modules (e.g., flush or renew caches) and
other actions.

[0163] The present disclosure is not to be limited in scope
by the specific embodiments described herein. Indeed, other
various embodiments of and modifications to the present
disclosure, in addition to those described herein, will be
apparent to those of ordinary skill in the art from the
foregoing description and accompanying drawings. Thus,
such other embodiments and modifications are intended to
fall within the scope of the present disclosure. Further,
although the present disclosure has been described herein in
the context of a particular implementation in a particular
environment for a particular purpose, those of ordinary skill
in the art will recognize that its usefulness is not limited
thereto and that the present disclosure may be beneficially
implemented in any number of environments for any num-
ber of purposes. Accordingly, the claims set forth below
should be construed in view of the full breadth and spirit of
the present disclosure as described herein.

1. A method comprising:

storing preference information for a user related to one or
more modules for use with a container document;

transmitting the preference information with a request for
data related to the module; and

receiving module data customized based on the prefer-

ence information.

2. The method of claim 1 wherein preference information
is stored for a subset of module of a user separate from other
preference information for other modules for that user.

3. The method of claim 2 wherein the subset comprises a
single module.

Jun. 14, 2007

4. The method of claim 2 wherein preference information
is stored separately for each module for a user.

5. The method of claim 1 wherein the preference infor-
mation is transmitted over the Internet to a remote module
specification server.

6. The method of claim 5 wherein the remote module
specification server uses the preference information to pro-
vide module data for use in the container document.

7. The method of claim 1 further comprising the act of
displaying the customized module data in the container
document.

8. The method of claim 1 wherein the preference infor-
mation is transmitted as part of an Internet resource request.

9. The method of claim 1 wherein the preference infor-
mation is transmitted as part of a URL used to transmit the
request.

10. The method of claim 1 wherein the preferences for a
module are stored in association with a location reference of
a module.

11. The method of claim 1 wherein the customized
module data customizes the content of the module data.

12. The method of claim 1 wherein the customized
module data customizes the appearance of the module data
for presentation in the container document.

13. The method of claim 1 further comprising the act of
enabling a user to modify, add or delete one or more
preferences stored.

14. The method of claim 13 wherein the user may modify
a preference for that user.

15. The method of claim 13 wherein the user may modify
a preference for another user.

16. The method of claim 13 further comprising the act of
verifying user right to modify a preference.

17. The method of claim 16 wherein the act of verifying
involves use of a digital certificate.

18. The method of claim 16 wherein the act of verifying
involves use of a token.

19. The method of claim 18 wherein the token comprises
a time element.

20. The method of claim 16 wherein the token is used to
determine whether the user has the right to modity, add or
delete a preference.

21. The method of claim 1 wherein each user is allotted
a certain amount of storage for preferences.

22. The method of claim 1 wherein the preferences are
stored at an Internet location remote from a server that
serves the container document.

23. The method of claim 1 wherein the preferences are
stored at an Internet location remote from the location where
the code for the module is stored.

24. The method of claim 1 further comprising transmitting
preference information for a user to another system.

25. The method of claim 1 wherein the preference infor-
mation comprises data intended to represent a geographic
location.

26. The method of claim 25 wherein the preference
information comprises a string indicating a location.

27. The method of claim 25 further comprising providing
the preference information to a server that converts the data
to a geocode location value.

28. The method of claim 27 wherein the geocode location
value is provided to a remote module.

29. The method of claim 27 wherein the geocode location
value comprises a latitude and longitude value.

US 2007/0136201 Al

30. The method of 25 wherein the preference information
is provided to a mapping module.

31. The method of claim 30 wherein the mapping module
accesses a map server to generate a map output.

32. The method of claim 31 wherein the map server uses
the preference information to generate a map output using
the geographic information.

33. The method of claim 31 wherein the map server
generates a map output with one or more elements of data
from one or more remote modules.

34. The method of claim 33 wherein data from one or
more remote modules is overlayed on map output.

35. A system comprising:

a module identification unit that identifies one or more
modules for use with a container document;

a preference unit that identifies preferences associated
with the module and a user to receive the container
document and transmits the preferences to a module
server;

a module server that receives module data based on the
preferences and serves module data to be used in the
container document.

Jun. 14, 2007

36. A system comprising:

identification means for identifying one or more modules
for use with a container document;

preference means for identifying preferences associated
with the module and a user to receive the container
document and transmits the preferences to a module
server; and

module server means for serving module data based on
the preferences and serves module data to be used in the
container document.

37. A method comprising

storing preference information for a user related to a
module for use with a container document, the prefer-
ences associated with a location reference where a
module specification is stored for the module;

transmitting the preference information with a request for
data related to the module to the location reference
where a module specification is stored; and

receiving module data customized based on the prefer-
ence information as applied to the module specifica-
tion.

