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SCALABLE USER CLUSTERING BASED ON SET
SIMILARITY

BACKGROUND

[0001] The present invention relates to digital data pro-
cessing and more particularly to grouping users of a com-
puter application or system into clusters.

[0002] Grouping users into clusters is done for a variety of
purposes. To achieve user personalization, for example, one
of the well known techniques, collaborative filtering,
involves clustering users and recommending to a user items
that other users in the user’s cluster have expressed interest
in. Conventionally, a user may be taken to have expressed
interest in an item in various ways, e.g., by clicking on it,
purchasing it, or adding it to a shopping cart. The recom-
mendation can take a variety of forms, e.g., presenting to the
user as part of search results, showing as news stories the
user may want to read, identifying items the user may want
to purchase, and so on.

[0003] One way to achieve user clustering is to define a
distance measure between two users and then cluster them
using well-known clustering algorithms like k-means or
hierarchical agglomerative clustering (HAC). However,
such techniques have shortcomings. For example, HAC has
a running time of O(n?) which is prohibitive for n values that
are hundreds of millions; and the k-means algorithm
requires representing the mean of data points, which is not
possible when the data points are sets.

SUMMARY

[0004] The present invention, in particular implementa-
tions, can provide scalable clustering of users where users
are each represented as a set of elements representing items
from a universe of items.

[0005] For example, given a universe of items that a user
can select through interaction with a computer system, users
may each express their interest in a respective subset of the
items through various actions like clicking on an item,
purchasing an item, adding an item to a shopping list,
viewing an item, and so on. Particular implementations of
the invention cluster users (i.e., assign users to clusters) in
such a way that users in the same cluster are likely to have
a high overlap between their respective subsets of items.

[0006] In one aspect, a computer program product in
accordance with an implementation of the invention can
cause data processing apparatus to obtain a respective inter-
est set for each of multiple users, each interest set repre-
senting items in which the respective user has expressed
interest through interaction with a data processing system;
for each of the multiple users, determine k hash values of the
respective interest set, wherein the i-th hash value is a
minimum value in the respective interest set under a corre-
sponding i-th hash function, where i is an integer between 1
and k, and where k is an integer greater than or equal to 1;
and assign each of the multiple users to each of the respec-
tive k clusters established for the respective user, the i-th
cluster being represented by the i-th hash value, wherein the
assignment of each of the multiple users to k clusters is done
without regard to the assignment of any of the other users to
k clusters.

[0007] Advantageous implementations can include one or
more of the following features. The product can cause data
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processing apparatus to record actions expressing user inter-
est in a log; and use the log to generate the interest sets for
the multiple users.

[0008] The product can cause data processing apparatus to
obtain a changed interest set for a first user of the multiple
users; determine k hash values for the first user using the
changed interest set; and assign the first user only to each of
the respective k clusters represented by the k hash values
determined using the changed interest set without changing
the assignment of any the other multiple users to clusters.

[0009] In another aspect, a computer program product in
accordance with an implementation of the invention can
cause data processing apparatus to obtain an interest set for
a user, the interest set representing items in which the user
has expressed interest through interaction with a data pro-
cessing system; determine k hash values of the interest set,
wherein the i-th hash value is a minimum value in the
interest set under a corresponding i-th hash function, where
iis an integer between 1 and k, and where k is an integer
greater than or equal to 1; and assign the user to each of k
clusters, the i-th cluster being represented by the i-th hash
value.

[0010] Advantageous implementations can include one or
more of the following features. The interest set has m
elements; the i-th hash value is a minimum value of m
applications of a one-way hash function, each of the m
application hashing an i-th seed value and a respective one
of the m elements of the interest set. The product can cause
data processing apparatus to use the k user clusters to
perform collaborative filtering for the user.

[0011] In another aspect, a system in accordance with an
implementation of the invention includes a log of items
selected by multiple users using a data processing system; a
means for using a fingerprint function and the log of items
to assign each of the multiple users to k clusters, where k is
an integer greater than or equal to 1; and a collaborative
filtering computer program application operable to provide
information to a first user of the multiple users based on the
assignment of the first user to one or more of the k clusters.

[0012] Advantageous implementations can include one or
more of the following features. The information includes at
least one of a recommendation, a prediction, or a ranking.

[0013] In another aspect, a computer program product in
accordance with an implementation of the invention can
cause data processing apparatus to use an ordered set of k
elements to identify a user of a data processing system,
where k is an integer greater than 1, where each of the k
elements corresponds to an element in an interest set, each
element in the interest set representing an item in which the
user has expressed interest through actions by the user using
the data processing system.

[0014] Advantageous implementations can include one or
more of the following features. The product can cause data
processing apparatus to use the ordered set of k elements to
identify the user in performing collaborative filtering for the
user. The collaborative filtering includes recommending
items to the user or ranking items for the user. The product
can cause data processing apparatus to receive input from
the user in response to which input the data processing
system removes elements from the interest set to generate a
revised interest set; determine a revised ordered set of k
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elements where each of the k elements corresponds to an
element in the revised interest set; and use the revised
ordered set of k elements rather than the initial ordered set
of k elements to identify the user. The ordered set of k
elements identifies the user as belonging to each of k user
clusters. The product can cause data processing apparatus to
record actions expressing user interest in a log; and use the
log to generate the interest set for the user. The data
processing system includes a web site; and the interest set
for the user includes representations of one or more items the
user has clicked on in a web page, items the user has
purchased from an on-line retailer, or items the user has
added to a shopping cart. The actions by the user expressing
interest in items include actions implicitly expressing inter-
est. The actions by the user expressing interest in items
include actions expressly expressing interest. The user is an
individual identified by a user logon. The user is an indi-
vidual identified by a cookie. The user is one or more
individuals having an observed attribute in common, where
the attribute is an attribute disclosed to the data processing
system by each of the one or more individuals. The user is
a session of an individual interacting with the data process-
ing system. Each element in the interest set is an item that
the user has selected in interaction with the data processing
system.

[0015] In further aspects, implementations of the inven-
tion can includes methods corresponding to the foregoing
programs and systems, and programs corresponding to the
foregoing systems.

[0016] The invention can be implemented to realize one or
more of the following advantages. Clustering calculations
are scalable. Calculations can be performed for applications
used by hundreds of millions of individual users, where
individual users can have tens, hundreds, or more items
represented in their interest sets. Clustering can be per-
formed where the clustered entities are represented by
subsets of a universe of items. The universe need not be
predefined. Clustering is based on a set similarity measure.
Clustering of new users occurs without changing any exist-
ing clustering. The clustering of one user occurs without
consideration of how other users were clustered or are being
clustered. However, some global values, e.g., seed values or
permutations, may be shared among clusterings. By chang-
ing their selections—e.g., by deleting or adding to item
selections, in effect—users can change the clusters to which
they are assigned when clusters are subsequently calculated
or recalculated. Cluster membership for a new user or a user
with modified interest set can be calculated without using
data from other users. Clustering calculations are not limited
to clustering users who are individuals. For example, clus-
tering can be done effectively whether each user is an
individual, each user is an aggregations of individual, each
user is an interaction with a system, or some combination of
them.

[0017] The details of one or more embodiments of the
invention are set forth in the accompanying drawings and
the description below. Other features and advantages of the
invention will become apparent from the description, the
drawings, and the claims.

BRIEF DESCRIPTION OF THE DRAWINGS

[0018] FIG. 1 is a flowchart illustrating a first method for
clustering users in accordance with an embodiment of the
invention.
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[0019] FIG. 2 is a flowchart illustrating a second method
for clustering users in accordance with an embodiment of
the invention.

[0020] FIG. 3 is a flowchart illustrating operation of a
recommender system using clusters of users in accordance
with an embodiment of the invention.

[0021] FIG. 4 is a schematic diagram illustrating a news
service with a new recommender engine in accordance with
one embodiment of the invention.

[0022] Like reference numbers and designations in the
various drawings indicate like elements.

DETAILED DESCRIPTION

[0023] FIG. 1 illustrates the following logical description
of'a minhash method for clustering users. While this method
can be implemented, it is being presented here principally
for explanatory purposes. A practical implementation for
clustering users in a system that has a very large number of
users will be described below in reference to FIG. 2.

[0024] As shown in FIG. 1, the inputs for the minhash
method are a universe of items 110, denoted U; a set of k
permutations 112, denoted pl, p2, . . ., pk; and an interest
set 114 for a user, denoted X_A for user A.

[0025] The permutations are permutations over U, and
they are picked uniformly from the set of all permutations
over U, so that each permutation is as likely to be picked as
any other. The permutations are each a one-to-one mapping
(a bijection) of U onto U. Such permutations can only be
realized if U is fixed and enumerable. The integer k is a
parameter of choice. Generally the value of k will be in the
range of 5 to 10. However, it can be any integer 1 or greater.
The method will assign k clusters to the user, denoted C1, .
. ., Ck. After the permutations are selected and used to
assign users to clusters, if the permutations are changed, all
the clusterings must be recalculated.

[0026] The interest set is a set of elements representing
items from the universe U. For the uses now being
described, in which the elements are the items themselves,
the interest set is a set of selections by the user, X_A, of
items from the universe U. These can be selected as
described above. For convenience in this specification, the
term “item” can refer either to an element of the interest set
or an actual selection by a user, and the sense will be clear
from the context.

[0027] Using this data, k hash values are determined (step
120) for the user, one for each permutation. For permutation
pi, the hash value is denoted by hi(X_A). The hash value for
permutation pi is the minimum element from X_A under
permutation pi, i.e., the minhash value. The minimum can be
determined from the values of the elements or from an
ordering of U.

[0028] Each minhash value serves as the identifier for a
cluster, and the user is assigned to each of the clusters. The
user will belong to k clusters, the i-th cluster being identified
by the i-th minhash value. Thus, for a given permutation pi,
two users belong to the same cluster if and only if the
minhash values of the interest sets under this permutation
are identical.

[0029] This minhashing technique, associating a hash
value for each data element, is one of a class of techniques,
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called the locality sensitive hashing techniques, that have the
desirable property that two data elements have the same
hash value with a certain probability that is directly propor-
tional to the similarly between the two data elements. In the
present case, if the similarity between two users A, B
(represented by their interest-sets X_A and X_B) is defined
as size of (X_A intersect X_B) divided by size of (X_A
union X_B), then the minhashing technique has the property
that the probability (defined over the set of permutations
from which was chosen the actual permutation used) that the
minhash values for the two users A and B are the same is
equal to the similarity measure defined above. Thus, min-
hashing achieves a probabilistic clustering where users fall
into the same cluster with probability equal to their simi-
larity.

[0030] Because k clusters are identified (step 122), if two
users have probability p (0=p=1) of being in the same
cluster, then even if they do not get clustered together in one
of the clusterings, they will get clustered together in a
fraction p of the clusterings. This gives a smoothing effect
such that each user uniformly belongs to k different clus-
terings and for each clustering gets clustered with other
similar users. The parameter k should be chosen to optimize
the tradeoft between efficiency (lower k gives better effi-
ciency) and quality (higher k gives better quality). Although
not strictly necessary, the number k will typically be a
constant; and a small value like 10 can provide good results.

[0031] This minhash clustering method is very scalable
and has several other advantages. For example, the running
time of the method is linear in the size of the data, i.e., the
total amount of (user, item) pairs.

[0032] Also, each user is clustered in isolation, i.e., inde-
pendent of all other users. This is particularly interesting in
the web domain where users are added, deleted and updated
all the time. An advantage that follows from this is that
several cases can be handled easily and incrementally that
are difficult for conventional clustering algorithms. If a user
is identified as spammy, i.e., as expressing sham interest for
the purpose of affecting a system that uses the clustering, the
user can be deleted without affecting any other user, i.e., the
rest of the clustering does not change. Also, if a user who had
kept her selections private decides to disclose her selections,
or if a new user is added to the system, she can be added to
clusters without reclustering the other users. Finally, if a user
decides to change his profile by, in effect, editing his interest
set, the clustering for the user can be updated in real time,
as opposed to update by a batch process, to take this into
account, without affecting the clustering of any other user.

[0033] FIG. 2 illustrates a practical implementation for
clustering users in a system that has a very large number of
users, up to hundreds of millions, and possibly hundreds or
more items in the interest set of each user, over a universe
of items that is not actually or practically enumerable. This
implementation uses the MapReduce programming model
and technology, which will be described later.

[0034] The inputs to this implementation are a collection
210 of data elements (e.g., result click logs, purchase logs,
etc.), denoted D, stored in no particular order, an ordered set
of k seed values 212, denoted sl, s2, ., sk, and a
fingerprint function 214. Each data element can be consid-
ered a pair (user, item) indicating that a particular user has
expressed interest in a certain item. Optionally, a suffix can
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be added to the root form of an item to indicate whether the
data element refers to the first, second, etc. instance of the
user expressing interest, to capture the how often the user
has done so. Advantageously, the form of the item is a text
string, so that the item can easily represent any user action
expressing interest through any web application—i.e.,
through any application that uses a web browser to present
a user interface to the user.

[0035] An action by which a user expresses interest can be
express—e.g., when the user provides information to the
system indicating the user’s interest in the form of an answer
to a on-line questionnaire, for example; or they can be
implicit—e.g., when the user selects a news story to read on
a news site.

[0036] The k seed values sl, s2, . . . , sk are numbers
considered as strings of bits chosen to appear random, e.g.,
so that the bits in the binary representation are uniformly “0”
or “17.

[0037] The fingerprint function maps a seed value and an
item (from an interest set) to a large number, e.g., a 64-bit
or 128-bit number.

[0038] In one implementation, the seed values are gener-
ated using the unix rand function to generate k 32-bit integer
values. The rand function may have to be called more than
once to generate a single seed. In this implementation, the
fingerprint function implements the MD5 one-way hash
algorithm, and hashes the seed value concatenated with the
item (which generally will be a text string or binary data) to
produce a 128-bit value.

[0039] The seed values and the fingerprint function cor-
respond logically to the k permutations p1, . . . pk, described
in reference to FIG. 1, and provide an ordering and permu-
tation of items without requiring an enumerable universe of
items.

[0040] The collection D is processed using the MapRe-
duce framework, which will be described later.

[0041] In the map phase 220, for each (user, item) pair, a
(key, value) pair is output with key=user and value=item, in
a distributed fashion.

[0042] In the reduce phase 222, all such (key, value) pairs
with the same key (user) are collected and presented to the
reduce routine, which is run once for each distinct key (user)
value, in a distributed fashion.

[0043] The reduce routine (for a particular user) processes
all the items in the interest set of the user; for this descrip-
tion, these m items will be denoted i1, i2, . . ., im. For each
seed value si, the reduce routine computes m values (one for
each item) that are the fingerprint of the item and the seed
value, i.e., fingerprint (si, il). The minimum of these finger-
prints, over the m items, is computed and that becomes the
i-th minhash value, corresponding to the i-th seed si.

[0044] A user is represented by the k minhash values thus
computed. These represent the k clusters that the user
belongs to, and the user is said to be assigned to these
clusters.

[0045] As shown in FIG. 3, a recommender computer
program application can use user clusters generated accord-
ing to any of the methods described in this specification.
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[0046] Inoneimplementation, a system records selections
made by its users in a log (step 310). The log can be stored
in any form, e.g., as lines of unstructured text or as records
in a structured database; and it can be stored on any
computer-readable medium, e.g., on disk drives on a file
server. The system can be a web site serving search results,
advertisements, purchase selections, simple links to pages
within or outside the site, or other items. The selections that
are logged can be, but need not be, all the selections made
by users of the system. For example, an application may
only be interested in selections of news sites rather than all
sites, or selections of items for purchase rather than all items
viewed. In addition, the system can maintain multiple logs
of different kinds of selections for different recommender
applications, which can calculate their own respective user
clusterings. For example, in a method using seeds and
fingerprint functions, each separate clustering can have its
own distinct seed sequence and fingerprint function.

[0047] The system can identify individuals as users by
user registration and log on, by cookies, or otherwise.
Optionally, a system can treat a user session as a user for
purposes of clustering if it is undesirable to maintain infor-
mation about individual users across multiple sessions of
interaction with the system. Cookies can also be used to
maintain sessions. (A cookie is a packet of information sent
by a server to a web browser and then sent back by the
browser each time it accesses that server.) Optionally, a
system can allow individuals to determine whether or not
they participate in logging, i.e., to include themselves in, or
to exclude themselves from, logging of their selections.

[0048] Optionally, a system can treat some attribute or
combination of attributes of an individual interacting with
the system as a user. The attribute can be observed by the
system, e.g., the IP (Internet Protocol) address being used or
the language being used, or it can be information provided
by the individual, e.g., a city or country of residence, or a
subscription to service provided by the system. Thus, for
example, a system could treat individuals from Cupertino as
one user and individuals from Redmond as a different user.
An advantage of such collective clustering is that it allows
a system to provide a degree of personalization without
requiring login or registration. In addition, a system can
optionally either do clustering for all kinds of users—e.g.,
individuals and aggregations—together in the same clusters,
or it can establish different clusters for different kinds of
users.

[0049] The selections made by the users of the system can
be simple selections or, optionally, composite selections. A
composite selection is a sequence of selections, for example,
a sequence of navigating from to a first web page and then
directly to a second web page. A web page is a resource,
typically an HTML (Hypertext Markup Language) docu-
ment, served by a web server to a web browser. A web server
is a computer program that accepts HT'TP (Hypertext Trans-
fer Protocol) requests, typically received over a network,
and provides an HTTP responses to the requester. The HT'TP
response typically consists of an HTML document, but can
also be a text file, an image, or some other type of document.

[0050] Based on the logged selections, users are each
assigned to k clusters (step 312), as described elsewhere in
this specification. This clustering of users can be updated as
new users appear in the system and as selections are added
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to or removed from the log. Optionally, under some circum-
stances, not all users are assigned to k clusters. In such
circumstances, one or more, but fewer than k, cluster iden-
tifiers can be obtained to find recommendations for a par-
ticular user. For example, if a system receives a request to
provide a recommendation for a new user who has a set of
selections, the system can optionally calculate the identity of
a first cluster using the selections, use that to find recom-
mendations, continue and similarly calculate and use a
second cluster, and so on, until a system-defined sufficient
number of recommendations has been found.

[0051] The recommender application can then use the user
clusters to make a recommendation for a particular user
(step 314). Any method for making recommendations based
on grouping users each into a single cluster can be used with
the multiple clusters described here. For example, such a
method can be applied k times and the k results merged to
provide a union set of recommended items for the user.
Alternatively, the number of different results in which an
item appears can be used to rank the items. Or, a few items
from each of the cluster-based recommendation results can
be provided to the user, to give the user a diversity of
recommendations. The multiple clusters a user is assigned to
may reflect different kinds of interests the user has had when
using the system, and so giving the user such a diversity of
recommendations makes it more likely that the recommen-
dations include something from the user’s current interest
than if only a single cluster were used.

[0052] A recommender application is one example of
collaborative filtering, and the methods of user clustering
described in this specification can be applied to other kinds
of collaborative filtering as well. In collaborative filtering,
users are found who are similar to a current user, and from
their preferences or behaviors, a ranking, recommendation
or prediction is made for the current user. By grouping users
into multiple clusters, a system implicitly identifies the
users’ preferences and groups items through the grouping of
users.

[0053] As illustrated schematically in FIG. 4, the tech-
niques for assigning users to clusters described in this
specification can be implemented in a news recommender
engine 410 that can provide recommendations of news
articles to be presented to users 402a, 40256 based on
selections of articles previously made by those users. The
users 402q, 4026 communicate through their respective
browsers with one or more web servers 430 through a data
communications network 404, for example, a local, wide-
area, or virtual private network, or the Internet. The news
service 420 is implemented as a computer program hosted
on the server or servers 430 and serves web pages to the
users 402a, 4025 in response to the users’ requests. Among
the pages served by the news service 420 are pages from
which a user can select one or multiple news articles for
display by the user’s browser. In response to user selections,
the news service 420 serves the user selected articles (func-
tionality 424). If the news recommender engine 410 has
provided recommendations for a particular user, the news
service can serve pages showing articles for selection by that
user according to the recommendations for the user (func-
tionality 422).

[0054] The news recommender engine 410 is imple-
mented as a computer program running on the server or
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servers 430. The news recommender engine 410 receives
selections from the users of the news service 420 and logs
those selections (functionality 412) in a log 440. Using the
information in the log 440, the engine assigns users to
clusters (functionality 414) as described elsewhere in the
specification. For any particular user who has been assigned
to a cluster, the engine determines recommendations based
on the clusters to which that user is assigned (functionality
416) and provides those recommendations to the news
service 420.

[0055] In determining what recommendations to make for
a particular user, the engine considers what selections were
made by other users who are assigned to the same cluster or
clusters as the particular user. Of the possible recommen-
dations, the engine can optionally eliminate news articles
that the user has already selected. The engine or the service
can rank the recommendations on a variety of criteria,
including the number of times a news article has been
selected by other users assigned to the clusters to which the
user is assigned, how recent the news article is, the number
of sources having articles on the subject of the news article
in question, and so on. In this way, a news service can
provide a personalized offering and ranking of news articles
to its users.

[0056] In one implementation, the news recommender
engine 410 identifies users as individuals and so requires
users to log in and register to get personalized recommen-
dations. In other implementations, users can be identified
implicitly or as collective groups, as described elsewhere in
this specification.

[0057] A recommender engine can be implemented along
these lines to support personalization of other kinds of
services, for example, services offering selections of images,
blogs, or shopping information.

[0058] Although illustrated in FIG. 4 as separate modules,
the functionalities of the engine and the service need not be
implemented in this way; in particular, the engine can be
implemented as part of the implementation of the service.

[0059] The following paragraphs describe the MapReduce
programming model and an implementation of the model for
processing and generating large data sets. The model and its
library implementation will both be referred to as MapRe-
duce. Using MapReduce, programmers specify a map func-
tion that processes a key/value pair to generate a set of
intermediate key/value pairs, and a reduce function that
merges all intermediate values associated with the same
intermediate key. Programs written in this functional style
can automatically be parallelized and executed on a large
cluster of commodity computers. The runtime system or
framework can be implemented to partition the input data,
schedule the program’s execution across a set of machines,
handle machine failures, and manage the required inter-
machine communication.

[0060] A MapReduce computation takes a set of input
key/value pairs, and produces a set of output key/value pairs.
The user expresses the computation as two functions: Map
and Reduce.

[0061] Map, written by the user, takes an input key/value
pair and produces a set of intermediate key/value pairs. The
MapReduce library groups together all intermediate values
associated with the same intermediate key I and passes them
to the Reduce function.

Feb. 15, 2007

[0062] The Reduce function, also written by the user,
accepts an intermediate key I and a set of values for that key.
It merges together these values to form a possibly smaller set
of'values. Typically just zero or one output value is produced
for each Reduce invocation. The intermediate values are
supplied to the user’s reduce function through an iterator. In
this way lists of values that are too large to fit in memory can
be handled.

[0063] Consider the problem of counting the number of
occurrences of each word in a large collection of documents.
The user would write code similar to the following pseudo-
code:

map(String key, String value):
// key: document name
// value: document contents
for each word w in value:
EmitIntermediate(w, “17);
reduce(String key, Iterator values):
// key: a word
// values: a list of counts
int result = 0;
for each v in values:
result += Parselnt(v);
Emit(AsString(result));

[0064] The map function emits each word plus an asso-
ciated count of occurrences (just ‘1’ in this simple example).
The reduce function sums together all counts emitted for a
particular word.

[0065] In one implementation, to perform a computation,
the user writes code to fill in a specification object with the
names of the input and output files, and optional tuning
parameters. The user then invokes a MapReduce function,
passing it the specification object. The user’s code is linked
together with the MapReduce library.

[0066] Even though the previous pseudo-code is written in
terms of string inputs and outputs, conceptually the map and
reduce functions supplied by the user have associated types:

[0067] map (k1, v1)—list(k2, v2)
[0068] reduce (k2, list(v2))—list(v2)

That is, the input keys and values are drawn from a different
domain than the output keys and values. Furthermore, the
intermediate keys and values are from the same domain as
the output keys and values.

[0069] Many different implementations of the MapReduce
model are possible.

[0070] The following paragraphs describe an implemen-
tation targeted to a computing environment having large
clusters of commodity personal computers connected
together with switched Ethernet. In this environment
machines typically have 2-4 GB (gigabytes) of memory per
machine, a cluster has hundreds or thousands of machines,
storage is provided by inexpensive IDE (Integrated Drive
Electronics standard) disks attached directly to individual
machines, a distributed file system is used to manage the
data stored on these disks that uses replication to provide
availability and reliability on top of unreliable hardware, and
users submit jobs to a scheduling system. Each job consists
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of a set of tasks, and is mapped by the scheduler of the
scheduling system to a set of available machines within a
cluster.

[0071] The Map invocations are distributed across mul-
tiple machines by automatically partitioning the input data
into a set of M splits. The input splits can be processed in
parallel by different machines. Reduce invocations are dis-
tributed by partitioning the intermediate key space into R
pieces using a partitioning function (e.g., hash(key) mod R).
The number of partitions (R) and the partitioning function
are specified by the user.

[0072] When the user program calls the MapReduce func-
tion, the following sequence of actions occurs:

[0073] 1. The MapReduce library in the user program first
splits the input files into M pieces of typically 16 megabytes
to 64 megabytes (MB) per piece (controllable by the user).
It then starts up many copies of the program on a cluster of
machines.

[0074] 2. One of the copies of the program is the master.
The rest are workers that are assigned work by the master.
There are M map tasks and R reduce tasks to assign. The
master picks idle workers and assigns each one a map task
or a reduce task.

[0075] 3. A worker assigned a map task reads the contents
of'the corresponding input split. It parses key/value pairs out
of the input data and passes each pair to the user-defined
Map function. The intermediate key/value pairs produced by
the Map function are buffered in memory.

[0076] 4. Periodically, the buffered pairs are written to
local disk, partitioned into R regions by the partitioning
function. The locations of these buffered pairs on the local
disk are passed back to the master, who is responsible for
forwarding these locations to the reduce workers.

[0077] 5. When a reduce worker is notified by the master
about these locations, it uses remote procedure calls to read
the buffered data from the local disks of the map workers.
When a reduce worker has read all intermediate data, it sorts
it by the intermediate keys so that all occurrences of the
same key are grouped together. The sorting is useful because
typically many different keys map to the same reduce task.
If the amount of intermediate data is too large to fit in
memory, an external sort is used.

[0078] 6. The reduce worker iterates over the sorted inter-
mediate data and for each unique intermediate key encoun-
tered, it passes the key and the corresponding set of inter-
mediate values to the user’s Reduce function. The output of
the Reduce function is appended to a final output file for this
reduce partition.

[0079] 7. When all map tasks and reduce tasks have been
completed, the master wakes up the user program. At this
point, the MapReduce call in the user program returns back
to the user code.

[0080] After successful completion, the output of the
execution is available in the R output files (one per reduce
task, with file names as specified by the user). Users do not
need to combine these R output files into one file; they can
pass these files as input to another MapReduce call, or use
them from another distributed application that is able to deal
with input that is partitioned into multiple files.
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[0081] The master keeps several data structures. For each
map task and reduce task, it stores the state (idle, in-
progress, or completed) and the identity of the worker
machine (for non-idle tasks).

[0082] The master is the conduit through which the loca-
tion of intermediate file regions is propagated from map
tasks to reduce tasks. Therefore, for each completed map
task, the master stores the locations and sizes of the R
intermediate file regions produced by the map task. Updates
to this location and size information are received as map
tasks are completed. The information is pushed incremen-
tally to workers that have in-progress reduce tasks.

[0083] Because this implementation MapReduce library is
designed to process very large amounts of data using hun-
dreds or thousands of machines, the library tolerates
machine failures gracefully.

[0084] The master pings every worker periodically. If no
response is received from a worker in a certain amount of
time, the master marks the worker as failed. Any map tasks
completed by the worker are reset back to their initial idle
state, and therefore become eligible for scheduling on other
workers. Similarly, any map task or reduce task in progress
on a failed worker is also reset to idle and becomes eligible
for rescheduling.

[0085] Completed map tasks are re-executed on a failure
because their output is stored on the local disk(s) of the
failed machine and is therefore inaccessible. Completed
reduce tasks do not need to be re-executed because their
output is stored in a global file system.

[0086] When a map task is executed first by worker A and
then later executed by worker B (because A failed), all
workers executing reduce tasks are notified of the re-
execution. Any reduce task that has not already read the data
from worker A will read the data from worker B.

[0087] Because there is only a single master, its failure is
unlikely; therefore the MapReduce computation is aborted if
the master fails. Users or user programs can check for this
condition and retry the MapReduce operation if they desire.

[0088] When the user supplied map and reduce operators
are deterministic functions of their input values, this distrib-
uted implementation produces the same output as would
have been produced by a non-faulting sequential execution
of'the entire program. Each in-progress task writes its output
to private temporary files. When a map task completes, the
worker sends a message to the master and includes the
names of the R temporary files in the message. If the master
receives a completion message for an already completed
map task, it ignores the message. Otherwise, it records the
names of R files in a master data structure. When a reduce
task completes, the reduce worker atomically renames its
temporary output file to the final output file. If the same
reduce task is executed on multiple machines, multiple
rename calls will be executed for the same final output file.
The atomic rename operation provided by the underlying file
system guarantees that the final file system state contains
just the data produced by one execution of the reduce task.

[0089] The implementation conserves network bandwidth
by taking advantage of the fact that the input data is stored
on the local disks of the machines that make up a cluster. The
file system divides each file into 64 MB blocks and stores
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copies of each block on different machines. The MapReduce
master takes the location information of the input files into
account and attempts to schedule a map task on a machine
that contains a replica of the corresponding input data.
Failing that, it attempts to schedule a map task near a replica
of that task’s input data (e.g., on a worker machine that is on
the same network switch as the machine containing the
data).

[0090] For dynamic load balancing, M and R should be
much larger than the number of worker machines. There are
practical bounds on how large M and R can be in this
implementation, because the master must make O(M+R)
scheduling decisions and keep O(MxR) states in memory, as
described above. Furthermore, R is often constrained by the
user because the output of each reduce task ends up in a
separate output file. In practice, M would be chosen so that
each individual task has roughly 16 MB to 64 MB of input
data so that the locality optimization described above is most
effective, and R would be a small multiple of the number of
worker machines expected to be used.

[0091] The total time taken for a MapReduce operation
can be affected adversely by a straggler: a machine that takes
an unusually long time to complete one of the last few map
or reduce tasks in the computation. To alleviate the problem
of stragglers, when a MapReduce operation is close to
completion, the master schedules backup executions of the
remaining in-progress tasks. The task is marked as com-
pleted whenever either the primary or the backup execution
completes.

[0092] In addition to the basic functionality described
above, the implementation provides the following useful
extensions.

[0093] 1In some cases, it is useful to partition data by some
particular function of the key. To support this, the user of the
MapReduce library can provide a partitioning function.

[0094] The implementation guarantees that within a given
partition, the intermediate key/value pairs are processed in
increasing key order. This makes it easy to generate a sorted
output file per partition, which is useful when the output file
format needs to support efficient random access lookups by
key, or users of the output find it convenient to have the data
sorted.

[0095] In some cases, there is significant repetition in the
intermediate keys produced by each map task, and the
user-specified Reduce function is commutative and associa-
tive. An example of this is the word counting example,
above. Each map task may produce hundreds or thousands
of records of the form <the, 1>. All of these counts will be
sent over the network to a single reduce task and to be added
together by the Reduce function to produce one number. To
provide for such cases, the implementation allows the user
to specify an optional combiner function that does partial
merging of data before it is sent over the network.

[0096] The combiner function is executed on each
machine that performs a map task. The same code can be
used to implement both the combiner and the reduce func-
tions. The only difference between a reduce function and a
combiner function is how the MapReduce library handles
the output of the function. The output of a reduce function
is written to the final output file. The output of a combiner
function is written to an intermediate file that will be sent to
a reduce task.
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[0097] The MapReduce library provides support for read-
ing input data in several different formats. For example,
“text” mode input treats each line as a key/value pair: the
key is the offset in the file and the value is the contents of
the line. Another common supported format stores a
sequence of key/value pairs sorted by key. Each implemen-
tation of an input type knows how to split data of its type into
meaningful ranges for processing as separate map tasks
(e.g., text mode’s range splitting ensures that range splits
occur only at line boundaries). Users can add support for a
new input type by providing an implementation of a simple
reader interface. In addition, a reader is not limited to
providing data read from a file. For example, a reader can
read records from a database or from data structures mapped
in memory.

[0098] In a similar fashion, the implementation supports a
set of output types for producing data in different formats,
and it is easy for user code to add support for new output

types.

[0099] Sometimes bugs in user or third-party code cause
the Map or Reduce functions to crash deterministically on
certain records. Sometimes it is acceptable to ignore a few
records, for example, when doing statistical analysis on a
large data set. The implementation provides an optional
mode of execution where the MapReduce library detects
which records cause deterministic crashes and skips these
records in order to make forward progress.

[0100] For this mode, each worker process installs a signal
handler that catches segmentation violations and bus errors.
Before invoking a user Map or Reduce operation, the
MapReduce library stores the sequence number of the
argument in a global variable. If the user code generates a
signal, the signal handler sends a “last gasp” UDP (User
Datagram Protocol) packet that contains the sequence num-
ber to the MapReduce master. When the master has seen
more than one failure on a particular record, it indicates that
the record should be skipped when it issues the next re-
execution of the corresponding Map or Reduce task.

[0101] More information about MapReduce can be found
in J. Dean and S. Ghemawat, MapReduce: Simplified Data
Processing on Large Clusters, Proceedings of the 6th Sym-
posium on Operating Systems Design and Implementation,
pp. 137-150 (Dec. 6, 2004), the contents of which are
incorporated here by reference.

[0102] Another method of clustering of users into multiple
clusters using a locality sensitive hashing scheme will now
briefly be described. In this method, each user has a profile
represented as a vector of high dimension characterizing the
user. A set of k hash functions operating on such vectors is
chosen. The i-th hash value for a user profile represents the
i-th cluster the user is assigned to. Locality sensitive hash
functions useful for this method are described in Charikar,
Similarity Estimation Techniques from Rounding Algo-
rithms, 34th ACM Symposium on Theory of Computing,
May 19-21, 2002, Montreal, Quebec, Canada.

[0103] In one implementation of such a method, the users
are represented by a list of <term, weight> pairs. As before,
k is the number of clusters and the number of hash values
calculated for a user. The number of seed values will be
given as 8 k for illustration, though in general what is given
as the constant 8 is a parameter. The 8k random seed values
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are represented as strings denoted s 1,s_ 2, ...s_ 8k, and
are chosen to appear random, e.g., so that the bits in the
binary representation are uniformly “0” or “1”. For every
user, the i-th hash value is computed as follows:

For b from 1 to 8:
do
initialize sum = 0;
for all <term_j, weight_ j> pairs in the user’s list:
do
if (fingerprint(term__j + s_((i-1)*8 + b)) has least
significant bit = 1)
sum = sum + weight_j
else
sum = sum — weight_j
done
if (sum > 0)
b-th bit of i-th hash value is set to 1.
else
b-th bit of i-th hash value is set to 0.
done.

[0104] The term fingerprint (term_j+s_((i—1)*8+b) repre-
sents the fingerprint function (calculated as described above)
of the j-th term (term_j) concatenated with the seed
strings_((i-1)*8+b).i.e., the ((i-1)*8+b)-th seed string.

[0105] Embodiments of the invention and all of the func-
tional operations described in this specification can be
implemented in digital electronic circuitry, or in computer
software, firmware, or hardware, including the structures
disclosed in this specification and their structural equiva-
lents, or in combinations of them. Embodiments of the
invention can be implemented as one or more computer
program products, i.e., one or more modules of computer
program instructions encoded on a computer-readable
medium, e.g., a machine-readable storage device, a
machine-readable storage medium, a memory device, or a
machine-readable propagated signal, for execution by, or to
control the operation of, data processing apparatus. The term
“data processing apparatus” encompasses all apparatus,
devices, and machines for processing data, including by way
of example a programmable processor, a computer, or mul-
tiple processors or computers. The apparatus can include, in
addition to hardware, code that creates an execution envi-
ronment for the computer program in question, e.g., code
that constitutes processor firmware, a protocol stack, a
database management system, an operating system, or a
combination of them. A propagated signal is an artificially
generated signal, e.g., a machine-generated electrical, opti-
cal, or electromagnetic signal, that is generated to encode
information for transmission to suitable receiver apparatus.

[0106] A computer program (also known as a program,
software, software application, script, or code) can be writ-
ten in any form of programming language, including com-
piled or interpreted languages, and it can be deployed in any
form, including as a stand-alone program or as a module,
component, subroutine, or other unit suitable for use in a
computing environment. A computer program does not
necessarily correspond to a file in a file system. A program
can be stored in a portion of a file that holds other programs
or data (e.g., one or more scripts stored in a markup language
document), in a single file dedicated to the program in
question, or in multiple coordinated files (e.g., files that store
one or more modules, sub-programs, or portions of code). A
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computer program can be deployed to be executed on one
computer or on multiple computers that are located at one
site or distributed across multiple sites and interconnected
by a communication network.

[0107] The processes and logic flows described in this
specification can be performed by one or more program-
mable processors executing one or more computer programs
to perform functions by operating on input data and gener-
ating output. The processes and logic flows can also be
performed by, and apparatus can also be implemented as,
special purpose logic circuitry, e.g., an FPGA (field pro-
grammable gate array) or an ASIC (application-specific
integrated circuit).

[0108] Processors suitable for the execution of a computer
program include, by way of example, both general and
special purpose microprocessors, and any one or more
processors of any kind of digital computer. Generally, a
processor will receive instructions and data from a read-only
memory or a random access memory or both. The essential
elements of a computer are a processor for executing
instructions and one or more memory devices for storing
instructions and data. Generally, a computer will also
include, or be operatively coupled to receive data from or
transfer data to, or both, one or more mass storage devices
for storing data, e.g., magnetic, magneto-optical disks, or
optical disks. However, a computer need not have such
devices. Moreover, a computer can be embedded in another
device, e.g., a mobile telephone, a personal digital assistant
(PDA), a mobile audio player, a Global Positioning System
(GPS) receiver, to name just a few. Information carriers
suitable for embodying computer program instructions and
data include all forms of non-volatile memory, including by
way of example semiconductor memory devices, e.g.,
EPROM, EEPROM, and flash memory devices; magnetic
disks, e.g., internal hard disks or removable disks; magneto-
optical disks; and CD-ROM and DVD-ROM disks. The
processor and the memory can be supplemented by, or
incorporated in, special purpose logic circuitry.

[0109] To provide for interaction with a user, embodi-
ments of the invention can be implemented on a computer
having a display device, e.g., a CRT (cathode ray tube) or
LCD (liquid crystal display) monitor, for displaying infor-
mation to the user and a keyboard and a pointing device,
e.g., a mouse or a trackball, by which the user can provide
input to the computer. Other kinds of devices can be used to
provide for interaction with a user as well; for example,
feedback provided to the user can be any form of sensory
feedback, e.g., visual feedback, auditory feedback, or tactile
feedback; and input from the user can be received in any
form, including acoustic, speech, or tactile input.

[0110] Embodiments of the invention can be implemented
in a computing system that includes a back-end component,
e.g., as a data server, or that includes a middleware com-
ponent, e.g., an application server, or that includes a front-
end component, e.g., a client computer having a graphical
user interface or a web browser through which a user can
interact with an implementation of the invention, or any
combination of such back-end, middleware, or front-end
components. The components of the system can be inter-
connected by any form or medium of digital data commu-
nication, e.g., a communication network. Examples of com-
munication networks include a local area network (“LLAN”)
and a wide area network (“WAN”), e.g., the Internet.
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[0111] The computing system can include clients and
servers. A client and server are generally remote from each
other and typically interact through a communication net-
work. The relationship of client and server arises by virtue
of computer programs running on the respective computers
and having a client-server relationship to each other.

[0112] Particular embodiments of the invention have been
described. Other embodiments are within the scope of the
following claims. For example, the steps recited in the
claims can be performed in a different order and still achieve
desirable results.

What is claimed is:

1. A computer program product, encoded on an informa-
tion carrier, comprising instructions operable to cause data
processing apparatus to:

obtain a respective interest set for each of multiple users,
each interest set representing items in which the respec-
tive user has expressed interest through interaction with
a data processing system;

for each of the multiple users, determine k hash values of
the respective interest set, wherein the i-th hash value
is a minimum value in the respective interest set under
a corresponding i-th hash function, where i is an integer
between 1 and k, and where k is an integer greater than
or equal to 1; and

assign each of the multiple users to each of the respective
k clusters established for the respective user, the i-th
cluster being represented by the i-th hash value,
wherein the assignment of each of the multiple users to
k clusters is done without regard to the assignment of
any of the other users to k clusters.

2. The product of claim 1, further comprising instructions

operable to cause data processing apparatus to:

record actions expressing user interest in a log; and

use the log to generate the interest sets for the multiple
users.
3. The product of claim 1, further comprising instructions
operable to cause data processing apparatus to:

obtain a changed interest set for a first user of the multiple
users;

determine k hash values for the first user using the
changed interest set; and

assign the first user only to each of the respective k
clusters represented by the k hash values determined
using the changed interest set without changing the
assignment of any the other multiple users to clusters.

4. A computer program product, encoded on an informa-

tion carrier, comprising instructions operable to cause data
processing apparatus to:

obtain an interest set for a user, the interest set represent-
ing items in which the user has expressed interest
through interaction with a data processing system;

determine k hash values of the interest set, wherein the
i-th hash value is a minimum value in the interest set
under a corresponding i-th hash function, where i is an
integer between 1 and k, and where k is an integer
greater than or equal to 1; and
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assign the user to each of k clusters, the i-th cluster being
represented by the i-th hash value.
5. The product of claim 4, wherein:

the interest set has m elements;

the i-th hash value is a minimum value of m applications
of a one-way hash function, each application hashing
an i-th seed value and a respective one of the m
elements of the interest set.
6. The product of claim 4, further comprising instructions
operable to cause data processing apparatus to:

use the k user clusters to perform collaborative filtering
for the user.
7. A system, comprising:

a log of items selected by multiple users using a data
processing system;

means for using a fingerprint function and the log of items
to assign each of the multiple users to k clusters, where
k is an integer greater than or equal to 1; and

a collaborative filtering computer program application
operable to provide information to a first user of the
multiple users based on the assignment of the first user
to one or more of the k clusters.

8. The system of claim 7, wherein the information com-
prises at least one of a recommendation, a prediction, or a
ranking.

9. A computer program product, encoded on an informa-
tion carrier, comprising instructions operable to cause data
processing apparatus to:

use an ordered set of k elements to identify a user of a data
processing system, where k is an integer greater than 1,
where each of the k elements corresponds to an element
in an interest set, each element in the interest set
representing an item in which the user has expressed
interest through actions by the user using the data
processing system.

10. The product of claim 9, further comprising instruc-

tions operable to cause data processing apparatus to:

use the ordered set of k elements to identify the user in
performing collaborative filtering for the user.
11. The product of claim 10, wherein:

the collaborative filtering comprises recommending items
to the user or ranking items for the user.
12. The product of claim 9, further comprising instruc-
tions operable to cause data processing apparatus to:

receive input from the user in response to which input the
data processing system removes elements from the
interest set to generate a revised interest set;

determine a revised ordered set of k elements where each
of the k elements corresponds to an element in the
revised interest set; and

use the revised ordered set of k elements rather than the
initial ordered set of k elements to identify the user.
13. The product of claim 9, wherein:

the ordered set of k elements identifies the user as
belonging to each of k user clusters.
14. The product of claim 9, further comprising instruc-
tions operable to cause data processing apparatus to:
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record actions expressing user interest in a log; and

use the log to generate the interest set for the user.
15. The product of claim 9, wherein:

the data processing system comprises a web site; and

the interest set for the user comprises representations of
one or more items the user has clicked on in a web
page, items the user has purchased from an on-line
retailer, or items the user has added to a shopping cart.

16. The product of claim 9, wherein the actions by the user
expressing interest in items comprise actions implicitly
expressing interest.

17. The product of claim 9, wherein the actions by the user
expressing interest in items comprise actions expressly
expressing interest.

18. The product of claim 9, wherein the user is an
individual identified by a user logon.

19. The product of claim 9, wherein the user is an
individual identified by a cookie.

20. The product of claim 9, wherein the user is one or
more individuals having an observed attribute in common,
where the attribute is an attribute disclosed to the data
processing system by each of the one or more individuals.

21. The product of claim 9, wherein the user is a session
of an individual interacting with the data processing system.

22. The product of claim 9, wherein each element in the
interest set is an item that the user has selected in interaction
with the data processing system.

23. A method comprising:

obtaining a respective interest set for each of multiple
users, each interest set representing items in which the
respective user has expressed interest through interac-
tion with a data processing system;

for each of the multiple users, determining k hash values
of the respective interest set, wherein the i-th hash
value is a minimum value in the respective interest set
under a corresponding i-th hash function, where i is an
integer between 1 and k, and where k is an integer
greater than or equal to 1; and

assigning each of the multiple users to each of the
respective k clusters established for the respective user,
the i-th cluster being represented by the i-th hash value,
wherein the assignment of each of the multiple users to
k clusters is done without regard to the assignment of
any of the other users to k clusters.

24. The method of claim 23, further comprising:

recording actions expressing user interest in a log; and

using the log to generate the interest sets for the multiple
users.
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25. A method comprising:

obtaining an interest set for a user, the interest set repre-
senting items in which the user has expressed interest
through interaction with a data processing system;

determining k hash values of the interest set, wherein the
i-th hash value is a minimum value in the interest set
under a corresponding i-th hash function, where i is an
integer between 1 and k, and where k is an integer
greater than or equal to 1; and

assigning the user to each of k clusters, the i-th cluster
being represented by the i-th hash value.
26. The method of claim 25, wherein:

the interest set has m elements;

the i-th hash value is a minimum value of m applications
of a one-way hash function, each application hashing
an i-th seed value and a respective one of the m
elements of the interest set.

27. The method of claim 25, further comprising:

using the k user clusters to perform collaborative filtering
for the user.
28. A method comprising:

using an ordered set of k elements to identify a user of a
data processing system, where k is an integer greater
than 1, where each of the k elements corresponds to an
element in an interest set, each element in the interest
set representing an item in which the user has expressed
interest through actions by the user using the data
processing system.

29. The method of claim 28, further comprising:

using the ordered set of k elements to identity the user in
performing collaborative filtering for the user.
30. The method of claim 29, wherein:

the collaborative filtering comprises recommending items
to the user or ranking items for the user.
31. The method of claim 28, further comprising:

recording actions expressing user interest in a log; and

using the log to generate the interest set for the user.
32. The method of claim 28, wherein:

the data processing system comprises a web site; and

the interest set for the user comprises representations of
one or more items the user has clicked on in a web
page, items the user has purchased from an on-line
retailer, or items the user has added to a shopping cart.



