a9y United States

Guha

US 20070038616A1

a2y Patent Application Publication o) Pub. No.: US 2007/0038616 A1

43) Pub. Date: Feb. 15, 2007

(54) PROGRAMMABLE SEARCH ENGINE

(76) Inventor: Ramanathan V. Guha, Los Altos, CA

Us)

Correspondence Address:
GOOGLE / FENWICK
SILICON VALLEY CENTER
801 CALIFORNIA ST.

MOUNTAIN VIEW, CA 94041 (US)

Publication Classification

(51) Int. CL

GOG6F 17/30 (2006.01)
(52) US. €l oo 707/4
(57) ABSTRACT

A programmable search engine system is programmable by
a variety of different entities, such as client devices and
vertical content sites to customize search results for users.
Context files store instructions for controlling the operations
of the programmable search engine. The contest files are

21) Appl. No.: 11/202,423 rocessed by various context processors, which use the
(21) App) p y p
instructions therein to provide various pre-processing, post-
(22) Filed: Aug. 10, 2005 processing, and search engine control operations.
402 409
Client | gE]
Query Query
|
406 409
Vertical Search Context
. Augmented
Content Engine Search
Server Interface Results
(SEI)
1
|
Query &
Context ID
v |
¢ Context ID,
QQ_ Client ID, or Query ﬁ
Context Contest for Context
Server Client, Query,—p» Processor
or Domain)
A
Reformed
Query, Search
Search Engine Results
-Parameters
450
Programmable
Search
Engine

Patent Application Publication Feb. 15,2007 Sheet 1 of 9 US 2007/0038616 A1

100

% digitalstr.org - Mozilla Firefox

digitalsir.org

Digital SLR information for the masses,

' semhm\@mmﬁghkhoxg:l | Search]

o - 104 - <106
SLR Confusion
The stew of new SLR bodies from giants Canon and Nikon has had many of us in the
phatographic community in a information frenzy. Canon released the Digital Rebel XT / 350D
and Nikon responded with the D70s and D50,

What does the “s" behmd the D70s stand for? How does it compare to the
~ soon-to-be-released DSO?

: 102
The answers at dDreview.j

Lucion | Permalink | Comments (0) | TrackBack (0)

Canon Comes to Grips

it's been a secret among Canon users, unwilling to cancede to Nikon users, that the insertion
of a small piece of index card into an obscure part of the battery compartment in the 20D
grip solves the problem of the premature low-battery warning,

Canon has finally owned up ta it, and are offering free repairs at their customer service .
centers. | iust hooe thev won't paint the small piece of index card black hooing vou won't see ™)

QL T P e R 3

e

Done ,‘ s

FIG. 1

Patent Application Publication Feb. 15,2007 Sheet 2 of 9 US 2007/0038616 A1

200
@ digitalstr.org Search nikan d100 - Mozilla Firefox
Try his seasch on Google ’ & Logged in as Sep
. Please rate digitalslrorg Search
- - Net good. Pleass don't show Lhis to me aggin (o]
.org arc

dlgltalSh Ora Se r h . Useful. Show as an option for these kind of seerches O
. @inthis context Very good. Meke it my default for these kind of ssasches O

Query: lmkon d100][semd\ } O Up o Google Search

Ruted highly by quha, gon. | Submit Raling

208

’C Vten Camera Moda]@:ewSouﬂ:e)

If you axe trying to decide which camera to buy< 204 Adorarma
Where to huy this camera fiom ... R2sC aurs.com - Loveepro Coapact
Ifyou slready ownone .. AW Profstioml Canen Bag
LS 210 p—
Nikon USA: D100 6 Hikom D100 wiPreziiers Package
Information on the Nikon di00 digital camera. Where Lo purchase & nikon 4100, 2
hitp/forvre ik Aemplate. phpZcai=1&grp™ N1=2 . J 202 Ado
Outdoor Photographer | October 2003 | Digital SLR Buying Guide Pt
... Langtime Nikon usess will immediately feed at home al the helm of a DI0D. .. 206 41 Bdenery Card with Writy
Accelertion (WAL
ttp/h tdoorp -mlctzu?ﬂﬂlloctldlgnds v- 2 0
oz .
Nikon Tech. Support. Nikon Knowledge Base, announcements, update 206 D100 Ceners Starge Accessories
hitp:/support ik h.comfeg- bin/nik fg/php 202 More Supocn, Updese, oc,
D100 Camera Power
e-FotoPortal Reviews Nikon D100 - PhotographyBLO 206 . Accessories
PhotographyBLOG brings you the latest and greatest. photag-aphy MWW 1 2 WolCanmy com " mmn MH19
BAA Charger i DI0D
hutpsfwww.photogrephyblog comfindez.php/weblogh o Cormmomity Patt | Cameny ol
Nikon D100 Review: 1. Introduction; Digital Photo, Review* — -
Nikon D100 Review: 1. Introduction: Digjlal Photography Review. 202 206 Focus Camera
Vidgoo Powa2000 Hivon BI-EL3
hitp A dpreview comfreviswafaikondtony ~_ 210 202 Mers Reclem | enoger QPIOS Bettery Grarge
—
Amazon com: Camera & Photo: Nikon D100 6MP Digital SLR Camera®
- NIKON MB.DI00 Multifunction Beliry Pack for Nikon D100 DigialSLR b{hk}_ 206)
hitpy/fwww.amezon.comiexec/obidos/ig/detail//BI00SIKITIveg ... 210

Dome s et

FIG. 2

Patent Application Publication Feb. 15,2007 Sheet 3 of 9

j 300

%D digitalsir.org Search nikon 4100 - Mozitla Firefox

US 2007/0038616 Al

digitalslr.org Search
@ln this context
|[saarch | OUp 1o digitalsir org Search

OUp toGoogle Search

Query: |nikon 8100

e Edt Yew Go Qookmarks Took Help . o -
Try this search en Gopgle Loggedin as Sep
Please rate digitalslrorg Seareh

Not good, Flease don't show this to me sgain o]
Useful, Show es an oplion for these kind of searches [o]
Very good. Make it my default fos these kind of searches (o]

Rated Righly by gy, Savy _-Submi! Rating

Compare Prices and Read Reviews on Nikon D100 Digital Cameraat ... *
Epinions has the best comperi hopping & ian on Niken Di00 Digjtal Camere.
hitp:/ferwwr epinions.com/Nikon_D100_Ceameras

J 302
Nikon D100 review test © 2004 KenRockwell com™
... which is why the expensive Canon 1D is only for amateur use and inferior to
hitpfeww K kwell /100 him

Mikon Digital SLR Camera - Nikon D100 - Most Popular #1% — 302
... Home > Nikon Digital SLR Camers - Sample Photo Gallery > Nikon D100 ...

w
hup:l}www,phofos- ofthe-year.com/nikon-dsi/showgallery php ...

306
NikonUSA* .

... Digital Imaging Marketing A ssocistion Names the Nikon DI0O(TM) as One of The Most Innovative Digital
Products AtPMA 2002. Mar 25, 2002 ...

306 A

ferier

Reviews, sanple photographs, etc, 304 Royal Cartera: D100

Other similar camsras to consider ... : Niken D100 Dighal Canea WS

Relevantproduct news.) 2485 F3-5 3.6 Lo

302
y ., . . Beach Camera

Qutdoor Photographer | October 2003 | Digital SLR Buying Guide* iken D100 Cames Pedugrt

"~ Longlime Nikon users uil immeditaly fac] st home et the hek of 8 DI0D. . 306 N

hitp:/ferww.cutdeorphotographer.com/content/ 200 act/digitals ... 30 2 D100 Camers Bodies

Nikon D100 Review; 1. Inroduction: Digital Photography Review™ e b0 630 Dighd L1

Nikon D100 Review: 1. Introduction: Digjtal Photography Review. 3 0 6 1‘“ Cano

hup/iwew. dpreview. conveviews/nikond 00/ 302 ol Rrvines -
Adaranta: D100 Body

Nidon D180 Digital SLR Cenens,
L,

D100 Camera Bodies
RitsCanay com - Nikon D10
Dighal SLR Canene - Bxhusiva
Dighul Xotr Padage - FREEY

D100 Camera Power
Accessories
WellCenaucom - Nikan EN-EL3
Lithimm Digieal Conirs Bozay &
D100 - DTO

Patent Application Publication Feb. 15,2007 Sheet 4 of 9 US 2007/0038616 A1

402 409
Client SEI
Query Query
!
y
406 409
Vertical Search Context
. Augmented
Content Engine Search
Server Interface Resuilts
(SEI)
|
|
Query &
Context ID
Y Y
Context ID,
_4_3_9_ +Client ID, or Query ﬂ
Context Context for Context
Server Client, Query,——p» Processor
or Domain)
A
Reformed
Query, Search
Search Engine Results
.Parameters
450
Programmable
Search
Engine

- FIG. 4

Patent Application Publication Feb. 15,2007 Sheet 5 of 9 US 2007/0038616 A1
504 502
Vertical Content Site “Client
Vertical Vertical 503
Context Content Browser
Files '
1
5—0_6- l———Query——
Vertical |509 Context
Content | SEI Query & 3ife<=t Augmented
ue S h
Server I Context |D‘I 1y R::Lrﬁts
500 L]
Programmable Search 510
Engine System Front End
Server
Context
Query & Augmented
Context ID Search
¢ Results)
Context ID,

530 <'_Cliento lnD?or Query | 520
Context Context f Context
Server Cliont, Query—p=| Processor

or Domain
Reformed » Search
Query Results
Cached Global 250
Context Context Search
Files Files Engine
!
60 580
= Context Context File
Registration Crawler Content
Interface Server/Index

FIG. 5

Patent Application Publication Feb. 15,2007 Sheet 6 of 9 US 2007/0038616 A1

602
Client’
603
Browser
604 1
Vertical _6_0_5_ 4__Q.gery Context
Content Vertical Vertical 609 Augmented
earc!
Site Content Content SEI | Query& Re:ults
Files Server ? I Context ID
— @ < ContextID, . _ | @.
Vertical Vertical Client ID, or Query Vertical
antext . Context Context for Context
Files " Server Clent Query.—# Processor
m Reformed ' Search
Search Query Results
Engine
System
' -
650
Search
Engine
Content
Server/Index

FIG. 6

Patent Application Publication Feb. 15,2007 Sheet 7 of 9

US 2007/0038616 Al

Server/Index

FIG. 7

: ‘
= 706 704
C_l;'ﬂt 703 e ZS-QE% Vertical Vertical
1en Browser Content Content
Server Site
. Context
Query Augmented Vertical
Results Content
Files
User _72_0 Query, Domain
Context Context
Files Processor
\
700
Search Relomea - Seareh
Engine
System
750
Content Search
Engine

Patent Application Publication Feb. 15,2007 Sheet 8 of 9 US 2007/0038616 A1

802b 802¢
Client Client
803 - 803
Browser % Browser
802a) : —
807 807
Client User 820 ~——
803 Context Context Cg:teerxt
Browser Files Processor \Dita’/
804a
Vertical Content
. Site ¢
806
Content 809 .
SEI &
892 ,
Nethr.I:,/;'
800
Programmable Search Engine System
810
804b Front End Server
Vertical Content Site
— 830 820 850
806 Context Context Search
Content % Server Processor Engine
Server :
TR0
840 > (T 8a2 > (810
Vertical Vertical Cached Global Content
Content | |, Context Context Context Server/
Files _Files) __Files J\ _Index J
860 880
Context Context
804c Regis. File User
Vertical Content Site Interface Crawler Accounts
]
806 820
Content AQ_O_Q Vertical
Server SEl Context
] Processor
Vertical
Context
Files

FIG. 8

Patent Application Publication

902a 902b
Context File for Context File for
Context Context
“Camera A’ “Camera B"

902d

902g
Context File

For Context
“Professional
Reviews”

" Context File

3

. 902e
Context File Context File for
for Context
« . Context
Professional “Consumer”
User”)

Feb. 15,2007 Sheet 9 of 9

US 2007/0038616 Al

902¢
Context File for
Context
“Camera C”

902f
Context File
For Context
“Owner”

902h 902i

Context File for Context File for Context File
Context Context For Context

“Looking for a “Shopping for “Technical
Camera” Camera” | Support”

902k 2021

For Context u CCoonte)r<itn
“All Reviews” mparing
Vendors

902n
Context File
For Context
“Negative
Reviews”

9020
Context File -
For Context

“User Reviews”

(o)
7

FIG. 9

Context File for

Knomgdge
Base
File

902j

902m

Context File for
Context

“Comparing

Site/Page
Annotation
File

US 2007/0038616 Al

PROGRAMMABLE SEARCH ENGINE

CROSS REFERENCE TO RELATED
APPLICATIONS

[0001] This application is related to the following patent
applications, the disclosures of which are incorporated
herein by reference:

[0002] U.S. patent application Ser. No. , filed on
the same date as the present application, for “Sharing
Context Data Across Programmable Search Engines” (attor-
ney docket #10550);

[0003] U.S. patent application Ser. No. , filed on
the same date as the present application, for “Aggregating
Context Data For Programmable Search Engines™ (attorney
docket #10551);

[0004] U.S. patent application Ser. No. , filed on
the same date as the present application, for “Generating and
Presenting Advertisements based on Context Data for Pro-
grammable Search Engines (attorney docket #10549); and

[0005] U.S. patent application Ser. No. , filed on
the same date as the present application, for “Detecting
Spam Related and Biased Contexts for Programmable
Search Engines” (attorney docket #10552).

FIELD OF INVENTION

[0006] This invention relates in general to search engines,
and more particularly, to search engines that are program-
mable by clients, hosts, and other devices and systems that
make use of the search engine’s services.

BACKGROUND OF INVENTION

[0007] The development of information retrieval systems
has predominantly focused on improving the overall quality
of the search results presented to the user. The quality of the
results has typically been measured in terms of precision,
recall, or other quantifiable measures of performance. Infor-
mation retrieval systems, or ‘search engines’ in the context
of the Internet and World Wide Web, use a wide variety of
techniques to improve the quality and usefulness of the
search results. These techniques address every possible
aspect of search engine design, from the basic indexing
algorithms and document representation, through query
analysis and modification, to relevance ranking and result
presentation, methodologies too numerous to fully catalog
here.

[0008] Regardless of the particular implementation tech-
nique—the fundamental architectural assumption for search
engines has that the search engine’s operational model is
fixed and non-alterable by entities external to the system
itself. That is, the search engine operates essentially as a
“black box”, which receives a search query, processes the
query using a complex, yet preprogrammed search algo-
rithm and relevance ranking model, and provides the search
results. Even where the details of the search algorithm are
publicly disclosed, the search engine itself still operates only
according to this algorithm, and nothing more.

[0009] An inherent problem in the design of search
engines is that the relevance of search results to a particular
user depends on factors that are highly dependent on the
user’s intent in conducting the search—that is why they are

Feb. 15, 2007

conducting the search—as well as the user’s circum-
stances—the facts pertaining to the user’s information need.
Thus, given the same query by two different users, a given
set of search results can be relevant to one user and irrel-
evant to another, entirely because of the different intent and
information needs. Most attempts at solving the problem of
inferring a user’s intent typically depend on relatively weak
indicators, such as static user preferences, or predefined
methods of query reformulation that are nothing more than
educated guesses about what the user is interested in based
on the query terms. Approaches such as these cannot fully
capture user intent because such intent is itself highly
variable and dependent on numerous situational facts that
cannot be extrapolated from typical query terms.

[0010] Consider, for example a user query for “Canon
Digital Rebel”, which is the name of a currently popular
digital camera. From the query alone it is impossible to
determine the user’s intent, for example, whether the user is
interested in purchasing such a camera, or whether the user
owns this camera already and needs technical support, or
whether the user is interested in comparing the camera with
competitive offerings, or whether the user is interested in
learning to use this camera. That is, the user’s situational
facts (e.g., whether or not they own the camera currently,
their level of expertise in the subject area), and their infor-
mation need (e.g., the type, form, level of detail, of the
request information) cannot themselves be reliably deter-
mined by either analysis of query terms, or resort to previ-
ously stored preference data about the user.

[0011] Another method of inferring intent is the tracking
and analysis of prior user queries to build a model of the
user’s interests. Thus, some search engines store search
queries by individual users, and then attempt to determine
the user’s interests based on frequency of key words appear-
ing in the search queries, as well as which search results the
user accesses. One problem with this approach is the
assumption that queries accurately reflect a user’s interests,
either short term or long term. Another is that it assumes that
there is a direct and identifiable relationship between a given
information need, say shopping for a digital camera, and the
particular query terms used to find information relevant to
that need. That assumption however is incorrect, as the same
query terms can be used by the same (or different users)
having quite different information needs.

[0012] Perhaps because in part of the inability of contem-
porary search engines to consistently find information
that’satisfies the user’s information need, and not merely the
user’s query terms, users frequently turn to websites that
offer highly specialized information about particular topics.
These websites are typically constructed by individuals,
groups, or organizations that have expertise in the particular
subject area (e.g., knowledge about digital cameras). Such
sites—referred to herein as vertical content sites—often
include specifically created content that provides in-depth
information about the topic, as well organized collections of
links to other related sources of information. For example, a
website devoted to digital cameras typically includes prod-
uct reviews, guidance on how to purchase a digital camera,
as well as links to camera manufacturer’s sites, price com-
parison engines, other sources of expert opinion and the like.
In addition, the domain experts often have considerable
knowledge about which other resources available on the
internet are of value and which are not. Using his or her

US 2007/0038616 Al

expertise, the content developer can at best structure the site
content to address the variety of different information needs
of users.

[0013] However, while such vertical content sites provide
extensive useful information that the user can access to
address a particular current information need, the problem
remains that when the user returns to a general search engine
to further search for relevant information, none of the
expertise provided by the vertical content site is made
available to the search engine. Many vertical content sites
provide a search field from which the user can access a
general search engine. This field is merely used to pass a
user’s search query back to the general search engine.
However, none of the expertise that is expressed in the
vertical content site is directly available to the general search
engine as part of the user’s query in order to provide more
meaningful search results. The expert content developer has
no formal, programmatic way of passing information to the
general search engine that expresses their expertise in their
particular knowledge site.

[0014] In other words, there are no contemporary search
engines that can be programmed by external entities—such
as vertical content sites—during the search process itself, in
way that can enhance the search process with the expertise
of the content developer of the vertical content site.

SUMMARY

[0015] A user’s query is processed using context informa-
tion that describes any combination of preprocessing opera-
tions (conducted prior to query execution) and post-process-
ing operations (conducted on the search results from query
executions. The pre-processing operations include opera-
tions to revise, modify or expand the query, to select one or
more document collections on which to conduct the search,
to set various search algorithm parameters for evaluating the
query, or any other type of operation that can refine,
improve, or otherwise enhance the quality of the user’s
search query. The context processed query is then executed
by a search engine to obtain a set of search results. The
post-processing operations applied to the search results
include operations to filter, organize, and annotate the search
results as well as provide links to related contexts for other
types of information or information needs. The context
processing operations can be provided by a programmable
search engine site, by a vertical content provider site, or by
a client device. The context processing operations are con-
trolled by context files that include commands, parameters,
and instructions. The context files may be stored at the
programmable search engine site, at various vertical content
providers, or at client device. Context files from multiple
different sources can be used jointly. Context processing can
also be limited to either preprocessing, or post-processing.
The selection of which context files to apply to a given user
query or a set of search results can be based on the query, the
user, the client device, the vertical content site from which
the query was received. The selection may be based as well
on one or more subscriptions that a user has to particular
vertical content providers, or popularity or reputation of a
vertical content provider.

[0016] The invention also has embodiments in computer
program products, systems, user interfaces, and computer
implemented methods for facilitating the described func-
tions and behaviors.

Feb. 15, 2007

BRIEF DESCRIPTION OF THE DRAWINGS

[0017] FIG. 1 illustrates a page from a host domain having
a search field for accessing the programmable search engine.

[0018] FIG. 2 illustrates the results of a search from the
host domain.

[0019] FIG. 3 illustrates a further page accessed from the
search results page.

[0020] FIG. 4 illustrates a generalized system architecture
for the programmable search engine.

[0021] FIG. 5 illustrates a first system architecture for a
programmable search engine.

[0022] FIG. 6 illustrates a second system architecture for
a programmable search engine.

[0023] FIG. 7 illustrates a third system architecture for a
programmable search engine.

[0024] FIG. 8. illustrates a combined system architecture
for a programmable search engine.

[0025] FIG. 9 illustrates a simple example of a set of
context files.

[0026] The figures depict various embodiments of the
present invention for purposes of illustration only. One
skilled in the art will readily recognize from the following
discussion that alternative embodiments of the illustrated
and described structures, methods, and functions may be
employed without departing from the principles of the
invention.

DETAILED DESCRIPTION

Introduction to Programmable Search

[0027] Referring now to FIGS. 1-3, there is shown an
example of the user experience in using a programmable
search system in accordance with an embodiment of the
present invention. In FIG. 1 there is shown a page 100 from
a host site, digitalslr.org, which is an example of a vertical
content site, here the field of digital cameras, as its content
and organization reflects the viewpoint and knowledge and
of' the entity that provides the site content. A vertical content
site can be on any topic, and offer any type of information,
and thus is not limited in that regard. For example, vertical
content sites include sites on particular technologies or
products (e.g., digital cameras or computers), political web-
sites, blogs, community forums, news organizations, per-
sonal websites, industry associations, just to a name a few.
What vertical content sites offer is a particular perspective
and understanding of the world, one that may be of interest
and value to some users. This perspective and understanding
can be expressed, at least in part, by the content provider’s
organization and selection of content, as well as commen-
tary, analysis or links to other content (e.g., commentary on
other sites on the Internet). Indeed, one valuable aspect of
vertical content sites is the particular collection of links to
other sites that the content developer has judged to be useful
in some regard, either for its depth, expertise, viewpoint, or
the like. That is, users in general find value in the judgments
of vertical content providers as to the usefulness of other
sources of information on the Internet.

[0028] The host site includes a web server for serving
pages, like page 100, to client devices. The pages are stored

US 2007/0038616 Al

in some repository, such as a database, file directories, or the
like. Thus, for example, the page 100 includes commentary
on the latest camera offerings from various companies, as
well as a link 102 to another site with relevant information
about digital cameras. Of interest in this example is the
search field 104, which allows the user to search the Internet
using a general search engine system (not shown), such as
the Google® search engine provided by Google, Inc. of
Mountain View, Calif. (of course in other embodiments,
other search engines may be used, even if they are not nearly
as powerful and sophisticated as Google). The user enters a
search query in the search field 104. Here, the query is
“Nikon d100”.

[0029] Selecting the search button 106 results in the web
server transmitting the search query to the search engine
system, using existing web protocols. In this example
embodiment, in addition to the search query, the host site
web server transmits a context file to the search engine
system (alternatively, the web server can transmit a link to
the context file, or simply a context file identifier). The
context file includes data that the search engine system uses
to control the operation of the search engine itself in
processing the search query and in presenting the search
results, in effect, programming the search engine’s opera-
tion. Thus, the context file, as will be further detailed below,
can be understood as a set of instructions to the search
engine system for processing a particular search query. The
instructions can control three aspects of the search process:
1) pre-query processing operations; 2) search engine control
information; 3) post-query processing operations. Among
other aspects, a context file may include descriptions of (or
links to) related context files, which likewise provide further
programmatic control of the search engine system.

[0030] FIG. 2 illustrates an example a search results page
200 that is provided back to the user’s client device, fol-
lowing processing of the context file and the search query.
This page 200 includes a set of search results 202 that satisfy
the search query, as well as additional information. First,
there is displayed a name of the current context 208 that has
been provided to the search engine system; the name is
simply a description the vertical content site developer’s has
given to express the type of information need or contextual
circumstances that pertains to the current search query. Here,
for example the current-context 208 is for a “Camera
Model”, since the search query matched a specific camera
model name as determined by processing of the context file.
This context operates as the entry point for a user seeking
information about a particular camera model.

[0031] Second, a number of links 204 are provided as
navigational aids to further pages that address different
possible information needs of the user. Each of these links
204 is associated with a related context file, which will
provide further instructions to the search engine system to
tailor further stages in the search process for a specific
information need, and thereby construct the desired pages.
For example, the first link “If you are trying to decide which
camera to buy” addresses a specific type of user information
need—information about how to purchase a camera, com-
parisons between camera, pricing information, and the
like—that derives from a specific type of user intent, the
intent to purchase a camera. The second link “Where to buy
this camera from . . . ” addresses a different and more
specific information need, the location of vendors for that

Feb. 15, 2007

particular camera. The last link “If you already own one . .
. 7 address yet entirely different type of information need,
that is for information that a current own would want, such
as technical support and service information, information
that is not relevant to the two previous information needs.

[0032] Third, the page 200 includes links 206 to other
related contexts as well, such as “More Manufacturer
Pages”, “More Guides”, “More Reviews”, and so forth.
These links each invoke a particular context in which the
vertical knowledge provider has characterized particular
sites and pages, and then defined a filter for the search engine
to select pages with the matching characteristics when
processing the reformulated search query.

[0033] For example, the vertical knowledge provider has
here previously identified a number of different sites or
pages on the internet as being variously manufacturer sites,
product review, buying guides, and so forth (e.g., according
to the type of site). The vertical knowledge provider can
label (or tag) a site with any number of category labels. The
labels can describe any characteristic that the vertical con-
tent provider deems of interest, including topical (e.g.,
cameras, medicine, sports), type (e.g., manufacturer, aca-
demic, blog, government), level of discourse (e.g., lay,
expert, professional, pre-teen), quality of content (poor,
good, excellent), numerical rating, and so forth. The ontol-
ogy (i.e., set of labels) used by the vertical knowledge
provider can be either proprietary (e.g., internally devel-
oped) or public, or a combination thereof.

[0034] For example, the vertical site provider has previ-
ously identified a number of sites as containing product
reviews, and has stored this information in a context file. The
link 206 to “More reviews” automatically would control the
system engine system to use this context file to filter the
search results during post-processing to those pages that are
from sites characterized as product reviews, and satisfying
the reformulated query.

[0035] Fourth, the page 200 includes various annotations
210 in conjunction with various ones of the search results.
These annotations 210 provide the user with the viewpoint
or opinion of the vertical knowledge provider about the
particular search result, as to any aspect of that search result
that the provider considers significant, such as what the
identified search result is about, how useful it is, or the like.

[0036] The placement, naming, and sequencing of the
various links 204, 206 are themselves defined in the context
files. This gives the vertical knowledge content provider
almost complete control over the organization and presen-
tation of the search results, which in and of itself represents
that provider’s particular perspective and determination of
what are the user’s likely information needs, and how the
search results should be organized to satisfy those needs, and
which related contexts should appear in response to each
level of search by the user.

[0037] FIG. 3 illustrates an example page 300 that is
provided to the user as a result of clicking on the first link
204, “If you are trying to decide which camera to buy.” The
context file associated with this link 204 is processed, and a
second search is performed on the search query. This page
300 shows the context name 308“Choosing a camera”,
which again reflects the selected information need of the
user. The search results 302 in this context are more spe-

US 2007/0038616 Al

cifically tailored to assisting the user in evaluating digital
cameras and selecting a satisfactory one. Notice, for
example, the first search result is to a buying guide for digital
cameras, and that there are no search results shows shown
here to technical support pages.

[0038] Above the search results 302 are links 304 to
further related contexts based on information needs, such as
“Review, sample photographs™, “Other similar cameras to
consider”, and “Relevant product news”. Again, these links
have associated context files that will control the search
engine system to provide search results that are relevant to
the described information needs for these contexts. Next to
the search results are additional links 306, which are also to
related contexts, and for example to further professional and
user reviews of digital cameras, sample photographs, and
other information particularly relevant to evaluating a cam-
era for purchase.

[0039] The user can thus continue to access additional
related context through the various links 304, 306, each time
obtaining search results that have been processed according
to the context files associated with the selected links. In this
way, the user can essentially search the Internet using the
powerful capabilities of a general search engine, yet obtain-
ing the benefit of the knowledge, expertise, and perspective
of the provider of the vertical content site. Vertical content
site providers benefit from this approach as it allows them to
further share their knowledge and perspective with users.
Vertical content providers are no longer limited to the
information that they can either create themselves, provide
links to, or comment upon.

[0040] With the capabilities of the present invention, ver-
tical content providers can define any variety of context files
to meet any type of information need that users may have.
The providers of the general search engine system are no
longer burdened with the task of themselves organizing and
categorizing content (as is conventionally done in various
directories and portals), but instead can rely upon the much
deeper and faster pool of vertical content providers—hun-
dreds of millions or more—as compared with the limited
pool of editors that may organize content directories or
categorize other websites for a general search engine.
Indeed, no individual search engine provider could possibly
employ the number of individuals with sufficient breadth
and depth of experience, knowledge, or perspectives to itself
provide the scope and variety of contexts that exists across
the entire Internet community. Instead, the present invention
provides any vertical content site provider with the capabil-
ity to programmatically control the general search engine
system on behalf of a user conducting a search.

[0041] The foregoing example is but one possible use of
the present invention, and many more applications and
usages will become apparent in the following discussion.

[0042] In another manifestation, the context file need not
change the order in which the initial results are presented,
but only annotate the results with the labels (e.g., tags) that
apply to them. Clicking on the label issues a new search,
which is restricted to the results having metadata matching
the label. In yet another manifestation, these annotations
need not be labels but links to relevant pages on other sites.

[0043] In yet another manifestation, the query need not
originate at the vertical content site, but at the search

Feb. 15, 2007

engine’s site, but use the knowledge provided by the vertical
content site. In this embodiment, the user indicates to the
search engine, either while using the vertical content site or
through a sign up process similar to that used to subscribe to
RSS feeds that the user would like to apply the vertical
content site’s contexts while conducting searches of a par-
ticular type.

System Overview

General System Architecture for a Programmable Search
Engine

[0044] FIGS. 4 through 8 illustrate a number of different
system architectures in which the present invention can be
employed. These architectures generally vary in terms of
which entities provide the context files and which entities
processes the context files to control the search process and
search result presentation. In general, the context files can be
provided by any system entity (e.g., any of a client device,
a host vertical site, or the search engine system), and can
likewise by processed by any system entity, or any combi-
nation there.

[0045] Referring first then to FIG. 4, there is shown a
generic system architecture. In this system architecture,
there is a client device 402, a vertical content server 406,
context server 430, a context processor 420, and a program-
mable search engine (PSE) 450.

[0046] The client 402 can be any type of client, including
any type of computer (e.g., desktop computer, workstation,
notebook, mainframe, terminal, etc.), handheld device (per-
sonal digital assistant, cellular phone, etc.), or the like. The
client device 402 need only have the capability to commu-
nicate over a network (e.g. Internet, telephony, LAN, WAN,
or combination thereof) with the PSE 450. Typically, a client
device 402 will support a browser application, and the
appropriate networking applications and components, all of
which are known to those of skill in the art. The client device
402 may include as well a search engine interface that also
it to directly query the PSE 450.

[0047] The user of the client 402 constructs and transmits
a search query to the PSE 450, via the content server 406,
which includes a search engine interface (SEI) 409. This
interface can be in part, as illustrated in FIG. 1, via a search
query field on a host site that includes the content server 406,
along with an underlying link to initiate processing of the
input text and forwarding the results thereof to the PSE 450.
The content server 406 selects an appropriate context file, as
identified by a context ID. The selection of the context file
can be based on the query itself, the client device 402, the
user identification, default selection parameters, user site-
behavior (e.g., page accesses, dwell times, clicks) or other
information programmatically available to the content
server 406. The context ID may be a URL, a unique context
name, a numerical 1D, or some other form of reference to the
context file. The content server 406 transmits the query
along with the context ID to the context processor 420.
Alternatively, content server 406 can provide the identified
context file directly to the context processor. Depending on
the embodiment, the content server 406 may also be respon-
sible for serving content pages to the client device 402.

[0048] The context processor 420 uses the context ID to
obtain the identified context file from the context server 430.
The context processor 420 may also pass an identifier of the

US 2007/0038616 Al

client device 402 (e.g., IP address, browser type, operating
system, device type), the user (e.g., user ID), or host domain
from which the search query is received, or the search query
itself, to obtain further context files from the context server
430.

[0049] As discussed above, a context file (or collection of
context files) can include three types of programmatic
information that can be used by the context processor 420
and/or PSE 450 to control the search process. These are: 1)
pre-query processing operations; 2) search engine control
data; 3) post-query processing operations. This program-
matic information will be discussed as part of the opera-
tional flow.

[0050] The context processor 420 processes the context
files to perform various preprocessing operations, to pro-
grammatically generate a reformulated query. These pre-
processing operations may be performed independently or in
any combination to obtain a reformulated query. These
include the following:

[0051] a) Query revision: the modification, addition, or
deletion of or one or more terms of the original query. Such
modifications include correcting spelling errors, including
replacing query terms, adding query terms (as conjuncts or
as disjuncts) or deletion of query terms (e.g. stop word
removal). The added or replaced terms may broaden or
narrow the scope of a query.

[0052] b) Creation of additional queries: For example,
given an original search query of “digital SLR”, an addi-
tional query may be “digital camera”. These types of query
reformulations are expressed in the context file as a series of
query rewrite rules. The query rewrite rules generally define
an output query (or query term) based on matching one or
more terms of the original query (e.g., replace “digicam”
with “digital camera”). Other rules may be applied auto-
matically as defaults, without being conditioned on the
terms of the query.

[0053] The second type of control information processed
by the context processor 420 are search engine control data.
These include:

[0054] a) selection of one or more search engines for
processing the reformulated search query. The PSE 450 may
include any number of different search engines, each of
which is optimized for certain types of searches. For
example, different search engines are typically used for text
searches, image searches, and audio searches. A search
engine typically will generate an information retrieval score
for various documents in terms of their relevance to the
search query. A context file can specify which search
engine(s) is to be used (e.g., by identification of a particular
URL for the search engine). The context processor 420
extracts this identified search engine, and constructs the
appropriate query string using the reformulated query.

[0055] b) selection of one or more document collections
for searching. A search engine system will typically have
access—to multiple different document collections, which
can be searched jointly, or individually. The provider of the
context file may instruct the PSE 450 to use one or more
specific document collections for a particular search. For
example, a vertical content site for healthcare professional,
may receive a search for “migraine”, and instruct the search
engine system to search the PubMed database provided by

Feb. 15, 2007

the National Library of Medicine, rather than a more general
search of the Internet. This constraint better tailors the
results to the medical literature most likely to be relevant to
the information need of a healthcare professional, rather than
the typical results to such a query on the Internet. The
context file can specify which document collections are to be
used (e.g., by specification of a database, index, or other
context repository). The context processor 420 extracts this
information from the context file as well, and passes it the
selected search engine as a parameter.

[0056] c) specification of search engine. parameters for
use during query processing. Most search engine algorithms
operate under a large number of parameterized controls
when generating information retrieval scores, such as
threshold values for scoring query term matches, iteration
cycles, waiting of links, terms and other query or document
attributes. Normally, these parameters are not accessible to
entities outside of the search engine system, but rather are
fixed by the search engine provider. However, in some
embodiments of the present invention, the search engine
system may be configured to receive and use any of these
types of parameters, thereby giving further incremental
programmatic control of the search engine to the vertical
knowledge developments. Again, the context processor 420
extracts these parameters from the context file and passes
them to the PSE 450.

[0057] The context processed query, which includes the
reformulated query and the search engine control data (if
any) that are specified in the context file, is thus provided to
the PSE 450. If multiple queries are constructed during
preprocessing, the context processor sends each of the
multiple queries and their associated search engine control
data (which may be individually varied for each additional

query).

[0058] The PSE 450 processes the reformulated query
using the search engine control data (if any) to obtain a set
of context processed search results, and provides these
search results back to the context processor 420. If multiple
queries are processed, then the PSE 450 can merge the
results from these searches.

[0059] The context processor 420 then provides various
post-processing operations, which again may be performed
independently or conjointly. The results of this post-pro-
cessing made part of the context processed search results.
The post-processing operations include:

[0060] a) filtering the context processed search results
using filters specified in the identified context. The context
file may specify one or more filters that the context processor
420 can apply to further limit the documents that are
included in the search results. These filters are expressed in
terms of rules that match metadata with particular metadata
associated each search result. The metadata can include both
native metadata to the document, such the document type,
date, author, site, size, or labeled metadata associated with
the document, that is the labeled characteristics provided by
the vertical content provider (or others).

[0061] For example, the filters may be defined to exclude
documents of certain types (either physical types, e.g.,
image files, or logical types, e.g., “reviews”), from particular
sites or internet domains (e.g., documents from the .biz or
.gov domain), websites, or of a certain vintage (e.g., docu-

US 2007/0038616 Al

ments published before Mar. 3, 2005). Referring back then
to the example of FIG. 3, the link 306 for “More Profes-
sional reviews” would invoke a filters defined to select only
documents labeled as “professional”, “product reviews”.
Again, these labels can be provided by the vertical knowl-
edge content provider from which the original query was
sourced, or from some other source. These options will be
more fully discussed below.

[0062] b) ranking of the context processed search results
using ranking parameters specified in the context file. The
PSE 450 includes a ranking function that ranks the search
results based on the respective information retrieval scores.
The context file can include ranking parameters, such as
weighting factors to increase or decreases the IR scores for
particular types of documents, for documents from selected
sources. The ranking function may also operate on identi-
fiable native or labeled metadata. For example, the rankings
can be adjusted based on length of document, publication
date, or document format just to name a few. Alternatively,
the ranking may be adjusted based on labeled metadata, such
ranking by expressed “rank” value, or by as increasing the
native ranking of documents labeled as “expert” by a weight
factor, or increasing the ranking of documents having a
specified quality measure of “lo”. The context processor
420 can use these ranking parameters to rank the documents
in the search results.

[0063] c) clustering of the search results using clustering
parameters. The context processor 420 may also cluster
(group) the search results according to parameters provided
in the context file. The parameters can specific clustering
based on native or labeled metadata. Thus, all documents
labeled as “professional reviews” can be clustered together;
or all documents where are image files can be clustered, or
documents from a given domain (e.g., all documents from
XXXX.Com).

[0064] d) providing navigational links in the context pro-
cessed search results to additional contexts. As illustrated in
FIGS. 2 and 3, the context processor may also provide links
that can be accessed to invoke additional searches for further
refinements of the information needs of the user. Each such
related context link invokes another cycle of pre-processing
and/or post-processing by the context processor 420 and if
so instructed, another cycle of query processing by the PSE
450.

[0065] e) annotating the context processed search results
using annotations specified in the identified context. As
illustrated in FIGS. 2 and 3, the context file may also provide
specific annotations 210 that can be included with any of the
search results.

[0066] The context processor 420 then provides the con-
text processed search results to the client device 402. As
noted, the user can access any of the related context links, or
perform entirely new queries, again making use of any
context files that are selected based on such queries.

[0067] The client device 402 may also query the PSE 450
directly, either through its search engine interface 403, or
simply by going to the website of the PSE 450 entering the
query directly there. In this scenario, context processing is
still handled by the context processor 420 in manner
described above.

Feb. 15, 2007

[0068] Programmable Search Engine System Based Con-
text Processing

[0069] Referring now to FIG. 5, there is a shown a system
architecture in which the context processing operations are
provided by the PSE system itself. In this embodiment again
there is a client device 502 including a browser 503, along
with a host vertical content site 504, and a PSE system 500.
The vertical content site 504 includes a vertical content
server 506 (e.g., a web and/or application server) and
vertical content files 505 (e.g., a database or directory of web
pages). Also present are vertical context files 507. The
vertical content site 504 also includes a search interface 509
to the PSE system 500, such as a search field and search
button as illustrated in FIG. 1. The user accesses the vertical
content site 504 using the browser 503, and from that site
can enter a search query to be processed by the PSE system
500. The vertical content server 506 processes the search
query to determine a context ID for an appropriate context
file, and transmits the search-query and context ID to the
PSE system 500. For example, the context ID can be
transmits as a parameter in a URL to the PSE system 500.
The vertical content site 504 also includes a number of
conventional components (e.g. firewalls, router, load bal-
ancers, etc.) riot shown here in order to not obscure the
relevant details of the embodiment.

[0070] The PSE system 500 includes a number of com-
ponents. A front end server 552 provides the basic interface
for receiving search queries. The front end server 552
extracts the context ID and query, and passes that to a
context processor 520. The front end server 552 may also
provide an identifier of the client device or the user to the
context processor 520. The context processor 520 provides
the context ID and query, to the context server 530. The
context server 530 uses the context ID to retrieve a context
file from a repository of cached context files 540. The
context files are received from any vertical content site 504,
including the illustrated site 504, via a registration interface
560. This allows any provider of a vertical content site 504
to define the context files that are to be used for handling
queries from their site and upload such context files for
storage by the PSE system 500. Alternatively, the context
files are extracted from the vertical content sites 504 by a
context file web crawler 580. The registration and crawling
methods may be used together. One implementation would
be for the vertical content site 504 to first register its context
files 507, which includes putting the site address on a crawl
list. Subsequently, the crawler 580 crawls the site 504 to
obtain any updates to the context files 507. Caching of the
context files ensures very high speed processing of the
context files at query time, since context processor 520 does
not need to retrieve the context files from the remotely
vertical content site 504, and thereby does not incur network
latency (or problems with the vertical content site being
unavailable).

[0071] The context server 530 may also obtain context
files from a repository of global context files 542. These
context files can be derived from data mining on the cached
context files 540, provided by the provider of the PSE
system 500, or any combination thereof.

[0072] The context server 530 provides the retrieved con-
text file(s) to the context processor 520. The context pro-
cessor 520 performs the appropriate preprocessing opera-

US 2007/0038616 Al

tions (if any) as defined in the context file to generate the
reformulated query, and establish the search engine control
data as set forth above, as part of the context processed
query. The search engine 550 receives the context processed
query, including reformulated query and search engine con-
trol data, and executes a search on same to provide a set of
context processed search query results. These results are
passed back to the context processor 520, which performs
the post-processing operations on the search results as
defined in the context file, to further modify the context
processed search results. These processed results are then
transmitted back to the client device 502.

[0073] This architecture provides various benefits. First,
as pointed it provides for high speed access to the context
files and eliminates reliance on the availability of the remote
vertical content sites to serve their context files on demand.

[0074] Second, collection and aggregation of the context
files 520 allows for various systemic to be achieved from
analysis of the context files. It must be appreciated that over
time, the number of vertical content providers employing
context files will easily reach millions if not hundreds of
millions, given the breadth and depth of the Internet. There
are currently over 200,000,000 Internet sites, and that num-
ber is increasing at a rate of more than 10% per year. Even
if only 1% of vertical content providers used context files,
that would exceed 2,000,000 such collections of context
files, providing a very rich repository of information.

[0075] Specifically, the following types of information
may be aggregated from the collected context files. The rules
used to define the query pre-processing operations can be
accumulated and used to identify the most frequently used
rules for various query terms. To a large extent this type of
information is more reliable, having been essentiality voted
on by a large population of interested providers, as opposed
to rules designed by a very small team of editors.

[0076] Similarly, analysis of the search engine control
yields identification of most frequently used search engines,
indices, and parameters for particular queries or types of
queries. Analysis of the query post-processing operations
also identifies the most frequently used annotations, related
contexts, ranking and filtering operations.

[0077] As mentioned above the context files includes label
metadata used by the vertical knowledge content providers
to describe the characteristics of any site or page on the
Internet. In one embodiment, these labels are selected from
a publicly provided ontology, so that vertical knowledge
content providers use the same set of labels to characterize
the content of the Internet. The ontology of labels can
describe categories and instances of any type. The ontology
includes, for example, topics, information types, informa-
tion sources, user types, and rating scales, just to name a few
possible aspects of the ontology. Accordingly, from the
cached context files 540 a categorization of Internet content
can be derived and validated. By way of simple example, all
Internet sites labeled as type “buying guide” and category
“digital camera” can be extracted from the cached context
files 540. A directory of these digital camera buying guides
can then be constructed, for example by selecting those sites
having that have a minimum number of appearances in the
context files. This approach again leverages the collective
judgment of the vertical content providers—that is, the
wisdom of crowds—as to the nature, type, and quality of
content on the Internet.

Feb. 15, 2007

[0078] From the foregoing, the PSE system 500 can
extract and establish a collection of globally optimized
context files, where the query pre-processing rules, search
engine control data, and query post-processing rules are
derived from statistically analysis of cached context files for
the frequency, distribution, variability and other measures of
the usage of context information.

[0079] One scenario for this architecture is to support
direct search queries with post-query context processing. In
this embodiment, a user query is received directly from the
client device 502, without first being passed through a
vertical content provider site 504. The user’s search query
can be received directly at the website of the PSE system
500 (e.g., via search query page), or a search interface in
browser toolbar, application, or system extension (e.g., a
search interface on the user’s desktop). In any event, the
user’s search query is handled without context based pre-
processing, (that is query modification based on a vertical
content provider’s context files), though internal adjustment
of the search query may be performed as part of native
search operations. However, the search results are then
post-processed with one or more context files, to provide the
various types of navigational links, related context links,
and/or annotations on search results as described and illus-
trated in FIGS. 2 and 3.

[0080] Another beneficial aspect of this architecture is that
analysis of the context files also allows for integration of
advertisement purchases based on contexts. That is, adver-
tisers can bid for placement of their advertisements in
specific contexts, rather than by specific query terms. For
example, an advertiser may bid for placement of an adver-
tisement for its digital camera when the context file for a
query indicates that the user is shopping for a particular
camera model, but not when the user is seeking technical
support. This allows advertisers to more precisely focus their
advertising efforts based on the user’s information needs—
which have been expressly described by the context files,
rather than merely inferred from the query terms.

[0081] Vertical Content Provider Based Context Process-
ing

[0082] Referring now to FIG. 6, there is shown an embodi-
ment of a system architecture in which the context process-
ing is provided by the vertical content site itself. In this
embodiment again there is a client device 602 including a
browser 603, along with a host vertical content site 604, and
a general search engine system 600. The vertical host
vertical content site 604 includes a vertical content server
606 and vertical content files 605 (e.g., a database or
directory of web pages). The vertical content site 606 also
includes a search interface 609 to the search engine system
600, such as a search field and search button as illustrated in
FIG. 1. The user accesses the vertical content site 604 and
from that site can enter a search query to be processed by the
search-engine system 600.

[0083] In this embodiment, the vertical content site 604
also includes various components for context processing,
including a vertical context processor 620 and local vertical
context files 607. As before, vertical content server 606
receives a search query from the client device 602, e.g., via
the browser 603, and processes the search query to deter-
mine a context ID for an appropriate context file. This
information is now provided to the vertical context proces-

US 2007/0038616 Al

sor 620. The context processor 620 passes the context 1D
(and optionally the client device 1D, user ID, and query) to
the context server 630. The context server 630 uses the
context ID to retrieve a context file from the vertical context
files 607.

[0084] The context server 630 provides the retrieved con-
text file(s) to the context processor 620. The context pro-
cessor 620 performs the appropriate pre-processing opera-
tions as defined in the context file to generate the context
process search query (including the search engine control
data as set forth above). The vertical context processor 620
then invokes the search engine 650 to process the context
processed query.

[0085] The search engine 650 receives the reformulated
query and search engine control data, and executes the
search accordingly, generating the context processed search
results. These results are passed back to the context proces-
sor 620, which performs the post-processing operations on
the search results as defined in the context file, to further
modify the context processed search results. These pro-
cessed results are then transmitted back to the client device
602.

[0086] The context processor 620 may also provide some
or all of the search engine control data to the search engine,
depending whether the search engine 650 exposes an appli-
cation programming interface. In some embodiment, where
the search engine 650 is closed, then the context processor
620 simply passes the queries to the search engine 650 and
operates on the results. In this embodiment, the context
processor 620 itself would use at least some of the search
engine control data, for example, selection of which search
engine to use. This gives the vertical content site provider
control as to which search engines 650 to use with which
types of user queries.

[0087] Client Based Context Processing

[0088] Referring now to FIG. 7, there is shown an embodi-
ment of a system architecture in which the context process-
ing is provided by the client device site. In this embodiment
again there is a client device 702 including a browser 703,
along with a host vertical content site 704, and a general
search engine system 700.

[0089] As before, the vertical host vertical content site 704
includes a vertical content server 706 and vertical content
files 705 (e.g., a database or directory of web pages). The
vertical content site 706 also includes a search engine
interface 709 to the search engine system 700, such as a
search field and search button as illustrated in FIG. 1. The
user accesses the vertical content site 704 using the browser
703 and from that site can enter a search query to be
processed by the search engine system 700.

[0090] In this embodiment, the client device 702 includes
the various components for context processing. First, the
client device 702 includes a browser 703, for accessing the
vertical content site 704 as well as any other available site
on the network. The client 702 includes a vertical context
processor 720, which can operate a plug-in to the browser
703, or Java applet. Here, the once the user makes the query
via the vertical content server 706, that query is also
provided to the vertical context processor 720. The context
processor 720 again processes the search query to determine
a context ID for an appropriate context file. Since the

Feb. 15, 2007

operation is local to the browser, the context processor 720
can use the context ID to retrieve a context file from the user
context files 707.

[0091] The context processor 720 then performs the
appropriate pre-processing operations as defined in the con-
text file to generate the context processed query. The vertical
context processor 720 then invokes the search engine 750 to
process the context processes query. The search engine 750
receives the context processed query, and retrieves search
results, forming the context processed results. These results
are passed back to the context processor 720, which per-
forms the post-processing operations on the search results as
defined in the context file, to further modify the context
processed search results. These processed results are then
passed back to the browser 703.

[0092] An advantage of this architecture is that it allows
the user to establish and user their own context files. Just as
individual vertical content providers have their individual
expertise and viewpoint, so to do individual users. Thus, a
user may define context files to categorize and label par-
ticular websites, for example, identifying the site that she
considers most authoritative or useful for particular topics.
The user can also define query pre-processing operations, or
more likely import such operations from others (e.g., experts
in various topical domains) who publish context files for this
purpose. Similarly, the user can define post-processing
operations that allow for customization in the presentation of
results, including arrangement of results into clusters or
grouping that the user feels most comfortable with. For
example, a user can define a personal context file in which
search results are always clustered into academic (.edu),
government (.gov), retail shopping (sites having metadata or
text indicative of online purchasing), and image files.

[0093] TUnified Architecture for Mutual Context Process-
ing

[0094] The various architectures illustrated in FIGS. 4-7
can all operate concurrently with different types of the
individual systems operating together. FIG. 8 illustrates this
system architecture for mutual and concurrent context pro-
cessing. All of the system elements communicate via a
network 892, such as the Internet.

[0095] First, the PSE system 800 includes a complete set
of components as described with respect to FIG. 4. The
operative features of these components have been previously
described and so are not repeated here.

[0096] Next, three types of client devices 802 are in
operation. Client device 802a simply has a browser 803 by
which it accesses various sites on the Internet. Client device
8025 includes a browser 803, as well as user context files
807, which can be passed to any available context processor
820 for processing in conjunction with a search query
provided by the user.

[0097] Client device 802¢ includes a browser 803 and user
context files 807, as a well its own context processor 820.
This enables the client 802¢ to perform local context pro-
cessing on the user’s search query prior to sending the query
to the search engine, as well as performing post-processing
operations after receiving the search results. This client’s
browser 803 also includes a search engine interface 809,
enabling direct querying of the PSE system 800. It is
contemplated (but not illustrated) that the other clients 802a

US 2007/0038616 Al

and 8025 may also include search engine interfaces 809, for
example, in the toolbar of their respective browsers 803.

[0098] The three types of different vertical content sites
804 are also shown. Vertical content site 804a includes a
content server 806, along with a search engine interface 809
to the PSE system 800, as previously described. The server
forwards a user’s query (from any type of the client devices
802) to the PSE system 800, providing as well the context
1D associated with the user’s current context (along with any
context related information received from the client device).
The site does not need to store its own context files, as these
can be stored at the PSE system 800 in the cached context
file database 840.

[0099] For this type of vertical content site 804a, the PSE
system 800 provides all of the context processing opera-
tions. Here, the site 804a does not provide any specific
context ID information. As a result, the PSE system 800 can
provide its own context identification mechanisms, for
example based on the site 804qa, the client 802, the query
terms, or the like. Using the context information, the context
server 830 retrieves the appropriate global context files 842,
and the context processor 820 uses these files for the context
processing operations, including pre-processing of the
search query, control of the search engine operation and
parameters, and post-query processing. The programmable
search engine site 800 passes the context processed search
results back to the requesting client, either directly, or within
the scope of the vertical content site 80454, e.g., using
framing techniques.

[0100] As with vertical content site 804a, vertical content
site 804¢ includes its own content server 806 search engine
interface 809, vertical content files 805, as well as local
vertical context files 807. This site 8045 receives a search
query from a client device 802, and forwards the query along
with the context ID for the query context to the PSE system
800. The site’s vertical context files 807 are cached in the
PSE system’s cached context files 840. The PSE system 800
receives the context ID, and uses its context server 830 to
retrieve the associated context files for site 8045 from the
cached context files 840. The context server 830 may also
retrieve any applicable global context file 842. The PSE
context processor 830 then processes the retrieved context
files, generates the context processed search query and
processes the queries via the search engine 850. The context
processed search results are the further post-processed by
the PSE context processor 820, again in accordance with
either the site’s context files or the global context files 842
(including where appropriate a combination thereof).

[0101] The last type of vertical content site 802¢ includes
its own content server 806 search engine interface 809,
vertical content files 805, local vertical context files 807, as
well as a local, vertical context processor 820. The local
context processor 820 receives the user’s search query, along
with the context ID for the user’s context, and using the
referenced context files performs the appropriate pre-pro-
cessing operations on the query prior to transmitting it to the
PSE system 800, along with the search engine control data
specified by the context files.

[0102] Here, the PSE system 100 can provide various
levels of services to the vertical content site 804c. Mini-
mally, the programmable search engine system 800 can
process the received context processed queries, and execute

Feb. 15, 2007

these queries accordingly via the search engine 850, pro-
viding the context processed search results back to the local
context processor 820 for further modification. The local
context processor 820 for the vertical content site 804c
provides further post-processing operations specified by the
identified context, and then forward the final set of context
processed search results to the client device 802.

[0103] Alternatively, the PSE system 800 can perform
some specific context processing operations as instructed by
the local context server 820, whether pre-processing, or post
processing, or control of the search engine operations. For
example, the local context processor 820 may perform the
pre-processing operations to reform the queries, but then use
the search engine control data to specify which document
collections and search algorithms the search engine 850
should use. In addition, the PSE system 800 may also add its
own layer of context processing based on its global context
files 842, including generation of additional reformulated
queries, control of the search engine 850, and post-process-
ing of search results prior to returning them to the vertical
content site’s local context processor 820. The vertical
content site 804¢ can forward the context processed search
results to the client device 802 directly, or can invoke
another layer of post-processing operations by the local
context processor 820, perhaps to further fine tune the
organization, commenting, or navigation features thereof.

[0104] The PSE system 800 can provide context process-
ing directly to user queries input at the PSE site from any of
the client devices 802. The user’s search query can be
received directly at the website of the PSE system 800 (e.g.,
via search query page), or a search interface in browser
toolbar, application, or system extension (e.g., a search
interface on the user’s desktop). Since the user’s query is not
coming from a vertical content provider, the PSE system
800°s context processing can use the global context files
842, including those for annotating search results with links
to potentially useful context for the user.

[0105] The degree of context processing for direct queries
can be varied, to include either pre-processing or post-
processing individually, or together. One embodiment of
direct query handling is providing a context-based post-
processing on the search results, without context based
preprocessing (e.g., query modification). Here, the user’s
search is received and executed without pre-processing
based on the context files of a specific vertical content
provider (though some internal adjustment of the query and
selection of search indices may be employed to provide the
most relevant search results). AS described with respect to
FIG. 5, the search results are then post-processed with one
or more context files, to provide the various types of
navigational links, related context links, and/or annotations
on search results as described and illustrated in FIGS. 2 and
3.

[0106] The post-processing operations in this scenario can
use either global context files 842, or can be based on the
context files of any number or selection of the vertical
content providers. In one embodiment, a user can identify
which the vertical content provider whose context files are
to be used for context processing. Identification can be done
via a subscription model, in which the user subscribes to
have such context processing done for her or her queries, for
example via a subscription interface (e.g., page) at the

US 2007/0038616 Al

website of the vertical content provider, which then forwards
an identifier of the user or the user’s client device to the PSE
800. A user may subscriber to a particular vertical content
provider in order to have that provider’s expertise, perspec-
tive or viewpoint applied to the user’s search queries and
results, without the user having to always enter a query from
that vertical content provider’s site.

[0107] For this embodiment, the PSE system 800 includes
a user account database 890, which stores for each user
various types of personal preferences for searches, including
the subscriptions to particular vertical content providers.
The PSE 800 also provides a registration interface (allowing
the user to register with the PSE system 800 for storing
search preferences, subscription information, and other user
settings), and a login interface for the user to login and have
the user’s settings applied to the user’s queries. Direct
queries received from the user and/or the user’s client device
802 are identified by the PSE 800 and then the appropriate
context files to which the user subscribed are used for
context processing. In another embodiment, similar to the
foregoing, subscription-based context processing is pro-
vided for direct user queries for both pre-processing and
post-processing operations.

[0108] The selection of which vertical content providers’
context files are to be used (whether for pre-processing,
post-processing or both) can be based on other factors
beyond a user’s subscriptions, as some users may not have
subscribed to any particular vertical content provider. In one
embodiment, the selection is based on a popularity measure
for each vertical content provider whose context files are
included in the cached repository. The popularity measure
can be based on web access statistics, like number of unique
visitors to a vertical content provider’s site each month (or
other time period), number of hits to such site, number of
current subscribers to the vertical content provider. These
and other statistical measures can be combined into a
popularity measure. Alternatively, or additional, the selec-
tion can be based on a reputation measure (or rank), where
the reputation of each vertical content provider is judged and
rated by users.

[0109] Insummary, the foregoing provides a general over-
view of the operations and various system architectures
useful with the present invention. As can be seen, the present
invention can be practiced in a number of different and
complementary embodiments. The capability of the present
invention enable any system entity to provide context files,
context processing (or both) results in both tremendous
flexibility and power. The flexibility (e.g., any system entity
can provide various levels of operative support, and coop-
erate with any other system entity) allows for rapid, wide-
spread and easy implementation of the present invention.
The context files and context processing capability can be
readily implemented in any vertical content site and in any
client. The power of the system derives in part from such
widespread distribution and implementation: the more con-
text files and context processing is adopted, the more con-
textual information can be accumulated and leveraged, for
example in the global context files. This enables the PSE
system to continually refine and adapt its capabilities to the
information needs of the wide variety of users. Further, the
widespread use of context files by vertical content develop-
ers continually expands the range of information needs and

Feb. 15, 2007

perspectives that can be satisfied, as well as the depth and
quality of that information that is used to satisfy such needs.

Contexts
[0110] Overview of Context File Implementation

[0111] Referring now to FIG. 9 there is shown a simple
example of a set of context files as might be developed by
a vertical content provider for a digital camera related
website. This simplified example is used only to illustrate
some of the basic aspects of context files, and not as
definitive statement of their characteristics;

[0112] In this example, the vertical content provider has
provided a variety of context files that suit different types of
information needs, and different types of available
resources. Context files 902 are illustrative of contexts
defined for various types of users of digital cameras, such as
a professional user searching for a digital camera, a con-
sumer searching for a digital camera, and an owner who
already has such a camera. Each of these types of users has
different information needs and typically different
approaches to evaluating the information she obtains. For
example, a professional user is typically most concerned
with technical performance issues such as picture quality,
durability, and compatibility with an existing set of profes-
sional equipment, whereas a consumer user is typically
concerned with ease of use, convenience and price. Both of
these types of users are seeking information during their
purchase process that is quite different from an existing
owner. An owner is not typically interested in obtaining
further opinions or evaluations of a product, but rather
information pertaining to its use, technical support, service,
or warranty issues.

[0113] Each of these three user type context files 902
contain instructions that enable a context processor to
respond to a specific query according to the expected
information needs of the user. Thus, the context file 9024 for
the professional user may include query revision rules to
modify a received query such as “Nikon camera” to “Nikon
DX2”, which is a current model of a professional digital
SLR, and one deemed by the content provider to be of most
interest to the professional user. By contrast, the context file
902¢ for the consumer user may include query revision rules
to modify this same query to “Nikon Coolpix 76007, again
a current model of the Nikon cameras, and determined by
the content provider to be the best Nikon camera for a
typical consumer user. Continuing this example then, the
vertical content site would pass the consumer context file
902¢ to a context processor along with the user query of
“Nikon camera”, and the context processor would use the
query modification rules to generate the appropriate revised
query for execution.

[0114] The arrangement and interrelationship of the con-
text files is highly flexible and is decided by the particular
vertical content provider. Each of the context files 902 can
point to any number of other context files 902 in an arbitrary
graph manner, as best determined by the content provider.
For example, the consumer user context file 902¢ references
two other context files, the “Looking for a Camera” context
files 90/, and the “Shopping for a Camera” context file 902i.
These context files more precisely focus on serving the
user’s intention, the former focusing on the information
needs when a user is still looking for a camera and in need

US 2007/0038616 Al

of information to evaluate potential products. The latter
context is appropriate when a particular camera has been
selected and the user is now shopping for the camera based
on price, availability, and other factors. Again, each of these
context files 902 references different and more selective
contexts. Thus, the “Looking for a Camera” context file 90/
references a group of context files 902% pertaining to various
types of reviews of digital cameras. The “Shopping for a
Camera” context file 902 references context files 902m,
902/ for comparing prices, and for comparing vendors. The
context files 902 can also be arranged hierarchically through
a series of directories.

[0115] As previously discussed, a context file may include
query revision rules, and search engine control information
that enables the context processor to programmatically tailor
the user’s query to the information needed, as indicated by
the context. For example, once the user enters the “Looking
for a Camera” context, that context file 90~ may contain
search control data that selects specific websites that contain
consumer oriented camera reviews, as deemed appropriate
by the vertical content provider. This control data would thus
be used by the search engine system to select one or more
document collections for targeting the query (or revised
queries) thereto.

[0116] Similarly, the “Shopping for a Camera” context file
902i would include search control data that selects various
price comparison engines to obtain current market prices on
a given camera. These examples illustrate how selection of
a context can programmatically vary the search query and
search control data and parameters in order to better suit the
user’s information needs.

[0117] It is important to further point out here that the
specific editorial decisions reflected in each context file
902—how to revise a query based on whether the user is a
professional or a consumer, or which sites to search depend-
ing on whether the context is shopping or looking—are
made by each vertical content provider individually. This
gives each vertical content provider—such as those with
expertise in a particular field, such as digital cameras—the
ability to define the contexts as they see fit, thereby using
their own judgment, expertise, knowledge, and opinions to
make the various determinations. Each vertical content
provider can define very detailed and precisely crafted
contexts, each of which can specifically control the opera-
tions of the programmable search engine in responding to a
search query. Users ultimately benefit from this individuated
capability because the vertical content providers to create a
dynamic information “market”: a market not merely for
content itself, but for perspective, experience, and knowl-
edge. That is, vertical content providers now offer users the
ability to “search the world” through their own point of
view, as suggested in FIG. 1 by the text “Search the web with
digitalslr.org.”

[0118] Site/Page Annotation File

[0119] One mechanism for encapsulating the expertise and
judgment of each vertical content provider is, at least in part,
the site/page annotation file 900. This context file 900
includes information variously categorizing or describing
characteristics of sites or pages on the Internet. Each entry
in the site/page annotation file 900 provides an identifier of
a site or page, e.g., a URL, along with a number of tags or
token identifying attributes, characteristics, weightings, or

Feb. 15, 2007

other qualitative or quantitative values. The tags can be
explicitly typed (e.g., as <tag, value> pairs), or implicitly
typed based on order and data format. A URL can specify a
site or page completely, or in part as a URL prefix, for some
portion of a web site. Such an annotation file 900 can be
provided using existing standard formats such as RSS (RDF
Site Summary or Really Simple Syndication).

[0120] The following are some examples of the contents
of a site/page annotation file:

[0121] wrl, http://www.dealtime.con/xPR-
Nikon_D100.~RD-81887137412,

[0122] descriptor, Review/NegativeReview,
[0123] rank, 6,

[0124] comment, “Professional Photographer lists vari-
ous shortcoming and compatibility problems”

[0125] wrl, http://www.dealtime.con/xPR-
Nikon_D100~RD-81887137412,

[0126] descriptor,
Review, rank, 0,

[0127] comment, “Professional Photographer is less
thrilled than many others about the D100

[0128] url,

Review/ProfessionalPhotographer-

[0129] http://www.dpreview.com/reviews/read_opin-
ion_text.asp?

[0130] prodkey=nikon_d100&opinion=15851,
[0131] descriptor, Action,
[0132] rank, O,

[0133] comment, “Short review on using the D100 for
sports photography”.

[0134] wurl, http://nikonimaging.com/global/news/,
[0135] descriptor, News,

[0136] rank, 3,

[0137] comment, “Nikon’s web site. Lots of info, but

hard to navigate”

[0138] wurl, http://www.kenrockwell.com/tech/2dig.htm,

[0139] descriptor, Guide,

[0140] rank, O,

[0141] comment, “Explains Digital SLRs vs Point and
Shoots”

[0142] wrl, http://www.luminous-landscape.com/tutori-

als/nikon-sn.shtml,

[0143] descriptor, Review/ProfessionalPhotographer-

Review,
[0144] rank, 8,
[0145] comment, “Extremely detailed, very technical,

comparative review”

[0146] wurl, http://www.photographyreview.com/,
[0147] descriptor, Review,
[0148] rank, 6,

US 2007/0038616 Al

[0149] comment, “Good all around site for photography
buffs”

[0150] wurl, gallery.photographyreview.com/showphoto,

[0151] descriptor, Photos,

[0152] rank, 8,

[0153] comment, “Good showcase of great photogra-

phy with a wide range of cameras”

[0154] url, http://www.olympusamerica.com/,

[0155] descriptor, Manufacturer,

[0156] rank, 10,

[0157] comment, “Olympus’s web site. Well organized

and informative”

[0158] In this embodiment of a site/page annotation file
900, each entry is a set of <name, value> pairs, as follows:

[0159] URL: provides the network address for where the
site or page is located. Note that both specific pages within
sites can be identified, as well as home pages for large sites.

[0160] Descriptor: a semantic label describing the site or
page. The content provider is free to use any labels he or she
chooses, since the query processing and post processing
operations are written in terms of rules that can operate on
these same descriptors. In the above example, the vertical
content provider has labeled various sites/pages to their
content type (e.g., “Negative review” or “News” or “Pho-
tos”), as well as to the type of entity which provides the
information (e.g., “Manufacturer”). Again, these descriptors
are merely illustrative, and the selection of which particular
descriptors are used to describe a site will be dependent in
at least in part on the particular category or topic for the
subject matter of the domain.

[0161] Referring back then first entry here is for a spe-
cifically identified page on a remote site (dealtime.com) that
contains a “negative review” of the Nikon D100 camera

[0162] The preprocessing and post processing operations
can use the tags as conditions for evaluation. For example,
a post processing rule in the “Negative Reviews” context file
902n would select for inclusion in the search results that had
a tag “Negative Review/NegativeReview”. The various tags
shown above—Manufacturer, Guide, Photos, etc.—are
merely illustrative of the scope and variety that can be used.
The ability to tag any site or page with a semantic label
allows for very powerful pre-processing and post processing
operations by the context processor.

[0163] In one embodiment, there is provided a common
ontology of tags which can be used, either exclusively or in
conjunction with a set of private tags defined by vertical
content provider. The ontology includes a hierarchy of
categories of information and content on Internet. One
useful ontology is provided by the Open Directory Project,
found at dmoz.org. All or a portion of such an ontology can
be used for the tags. The ontology can be public, as in the
OPD, or proprietary, or a combination of both.

[0164] Rank: Each entry can have a rank (or “score”,
“weight”, etc.) a figure of merit as to the importance, quality,
accuracy, usefulness, and the like of the particular page or
site. This value is provided by the vertical content provider,
again based on his or her own judgment and perspective. The

12

Feb. 15, 2007

rank value further allows the context processor to selectively
include (or exclude) search results that have certain rank
values, or to rank individual search results by this value as
well.

[0165] Comment: Each entry can have a comment, expla-
nation or description that the vertical content provider can
use to further describe the page to the user. The comment
allows the vertical content provider to further articulate the
relationship between the page and the user’s information
need.

[0166] Note further, that a given site or page can have
multiple entries in the site/page annotation file 900, each
with its own descriptors, and other tags. For example, the
first two entries above are for the same page, but with
different descriptors, ranks, comments and so forth. When
more than one entry matches a given URL, depending on the
use, either both or the most specific entry is applied.

[0167] The URL, Descriptor, Rank, and Comment fields
are illustrative of the types of information that can be
included in the site/page annotation file 900. The vertical
content provider can define any number of other or addi-
tional attributes, and then define complementary pre-pro-
cessing and post-processing rules that operate on such
attributes. For example, other attributes that can be included
in the site/page annotation file include:

[0168] Content Type: a designation of the type of site or
page, such as guide, scientific article, government report,
white paper, thesis, blog, and so forth.

[0169] Source Type: a designation of the source of the
document, which maybe the same or different than the Tag.
For example: government, commercial, non-profit, educa-
tional, personal, and so forth. An “Organization” attribute
may serve a similar purpose.

[0170] Location: a designation of the country, state, coun-
try or other geographic region relevant to the page, using
names, standard abbreviations, postal codes, geo-codes, or
the like.

[0171] User Type: a designation of the intended type of
user or audience for the site or page. For example, lay
person, expert, homemaker, student, singles, married, eld-
erly, and so forth.

[0172] The foregoing descriptors are themselves instances
or specializations of a generic attribute type ‘tag’. Accord-
ingly, vertical content providers can choose to simply use the
“tag” designation in association with a property value (e.g.,
tag, “Manufacturer”), or may use some specialization of tag,
such as those listed above, or a combination of both
approaches. This feature further enhances the flexibility and
the extensibility of the present invention.

[0173] Any given page or site can have multiple different
entries in the site/page annotation file. For example, the first
two entries in the above list are for the same page, but have
different tags, the first being a Negative Review, and the
second being a Professional Photographer Review, different
ranks, and different comments. This allows the vertical
content provider to express the relevance of a give site for
a particular context, rather than being limited to a single
inclusion.

US 2007/0038616 Al

[0174] Knowledge Base

[0175] A second mechanism for capturing the knowledge
and expertise of the vertical content provider is the knowl-
edge base file 904. The knowledge base file 904 is used to
describe specific knowledge of concepts, facts, events, per-
sons, and like. This information is encoded in a graph of
object classes and instances thereof. A simple knowledge
base file 904 could be as follows:

<KB>

<Class id="CameraModel"/>

<Class id="DigitalSLRCamera">
<subClassOf ref="CameraModel"/>

</Class>

<Digital SLRCamera id="NikonD100">
<manufacturedIn ref="Japan”/>
<name>D100</name>
<name>Nikon D100</name>
<manufacturer>Nikon</manufacturer>
<brand>Nikon</brand>
<format>SLR </format>
<madein>Japan</madein>
<modelyear>2003 </modelyear>
<megaPixels>6mp</megaPixels>

</DigitalSLRCamera>

<DigitalSLRCamera id="CanonDigitalRebel">
<manufacturedIn ref="Japan”/>
<name>EOS300D</name>
<name>Digital Rebel</name>
<manufacturer>Canon</manufacturer>
<brand>Canon</brand>
<format>SLR </format>
<madein>Japan</madein>
<modelyear>2003 </modelyear>
<megaPixels>6.5mp</megaPixels>

</DigitalSLRCamera>

</KB>

[0176] This knowledge base defines the class of “Cam-
eraModel”, used to identify individual types of cameras.
Each class had a class id, as shown. A class can then be a
subclass of another class. Hence, the class “Digital SLRCam-
era” is a subclass of the “CameraModel” class.

[0177] Instances of a class can then be defined as well.
Here, two different instances of the class “DigitalSLRCam-
era” are defined by giving them specific ids, here
“NikonD100” and “CanonDigitalRebel”, and a listing of a
variety of properties, such as their name, manufacturer,
location of manufacture, model year, and so forth. The
properties for each class are determined by the provider of
the knowledge base file 904, such as the vertical content
provider.

[0178] The programmable search engine may maintain its
own global knowledge base file as part of its global context
files. This global knowledge base can provide an extensive
database encapsulating a vast array of knowledge, concepts,
facts, and so forth, as extracted from content on the Internet,
provided by experts or editors, or any taken from existing
databases. Vertical content providers can then make use of
this global knowledge base by providing preprocessing and
post processing operations that make use of such knowledge
base information, as further described below.

[0179] Pre-Processing and Post Processing Context Pro-
cessing Operations

[0180] The context files 902 use a script or markup
language to define the various preprocessing, search engine

Feb. 15, 2007

control, and post-processing operations. The various ele-
ments of the language are as follows:

[0181] (i) Object Evaluation

[0182] The knowledge base file 904 can be used to evalu-
ate whether particular objects have defined properties or
attributes. In general, there are three basic types of objects
that can be evaluated related to the knowledge base: queries,
users, and search results. The form of the evaluation com-
mands are generally the same.

[0183] The query evaluation commands for evaluating
terms using the knowledge base file 904 are as follows:

<query.denot.property>property__value</query.denot.property>
<query.denot.InstanceOf>class__id</query.denot.InstanceOf>
<query>query__term</querys>

[0184] The first type of term based evaluation is used to
evaluate whether the concept expressed by one or more
query terms matches some object in the knowledge base file
that has the specified property with the specified property-
_value. The context processor processes this command by
traversing the knowledge base file 904 (as a graph, for
example) until it finds an object having a property with the
matching property value. For example, assume the knowl-
edge base file 904 portion described above, and the query
evaluation command:

[0185] <query.denot.Manufacturer>Nikon</query.denot-
.Manufacturer> and the input search query “D100”.

[0186] Here, the query term “D100” matches the name of
a camera instance in the knowledge base file 904. The
context processor than checks whether the Manufacturer
property of that instance is “Nikon”. Since it is, the query
“D100” is said to denote a camera manufactured by Nikon,
even if that is not specifically disclosed in the query term
itself. Accordingly the query evaluation command is satis-
fied, and the context processor would then take an appro-
priate action that was dependent on this evaluation. As will
be further illustrated below, a variety of different commands
to the context processor can be made conditional based on
the evaluation of the query evaluation command.

[0187] The second type of query evaluation command is
query.denot.InstanceOf. This command is evaluated to
determine whether a particular query indicates that an
instance of a class has been described in the query, rather
than property. For example, consider the query evaluation
command:

[0188] <query.denot.InstanceOf>DigitalSLRCamera</
query.denot> where the user query is “8 mp SLR”.

[0189] Here, the query is decomposed into terms “8 mp”
and “SLR”, and these are checked against the property
values for the objects in the knowledge base file. In this
example, these properties match the properties for the Nikon
D100 camera, satisfying the query evaluation command.
Again, the context processor would undertake whatever
command was conditioned on the evaluation command.

[0190] The last type of query evaluation command
<query>query_term</query> is the simplest. The query

US 2007/0038616 Al

evaluation command is satisfied if an input search query
term matches the query_term.

[0191] As noted above, the context files may use any
combination of query evaluation commands as conditional
triggers for further context processing. Example of these will
be further described below.

[0192] As with the evaluation of queries, so too can users
and search results may be evaluated for their properties, with
respect to any defined class in the knowledge base file. Thus,
the attributes of user can be evaluated with the following
command

[0193] <user.property>property_value</user.property>

[0194] where property refers to any available property of
the user, such as user name, login, account number, location,
1P address, site activity and history (e.g., clicks, focus, page
dwell time) and so forth. Some of these properties can be
locally available from the knowledge base file 904. Alter-
natively, the property information can be extracted (e.g.,
queried) from any accessible legacy database (e.g., a cus-
tomer database, account database, registration database, or
other data source), which exports an appropriate program-
matic interface. Other properties, such as site activity, are
made available from site tracking tools that monitor each
user’s activity at the vertical content site.

[0195] Users can also be evaluated for membership in
classes, using the following:

[0196] <user.InstanceOf>class_id</user.instanceOf>

[0197] Here, a class of users (e.g., “Professional”) can be
defined in the knowledge base file 904, and the properties of
the current user compared by the context processor against
the properties of an identified class for match in values. If a
property match is found, the user is deemed a member of the
class.

[0198] Similarly, any search result can be evaluated as
well, as to its properties, as defined in either the source/page
annotation file 900 (or alternatively, in its metatags). Here,
the evaluation command would take the form:

<result.tag>tag value</result.tag>
<result.tag.InstanceOf>class__id</result.tag. InstanceOf>

As a default <result.tag> may be abbreviated to <tag>.

[0199] In the first command, a given search result (or set
thereof) can be evaluated with respect to its properties, such
as content type, date, source, user type, etc. This outcome of
the evaluation can be used to control further context pro-
cessing. Similarly, search results can be evaluated using the
second command syntax to determine if they are instances of
various classes defined in the knowledge base file 904.

[0200] These following context processing operations can
be executed unconditionally, or conditionally based on any
of the foregoing types of evaluation operations (e.g., evalu-
ations of query terms, users, or search results).

[0201] (ii) Query Modification

[0202] There are two basic types of query modification
rules, those that augment or add terms to a query, and those

Feb. 15, 2007

that replace query terms. The following is example syntax
for the query modifier command:

<QueryModifier type="augment" value="query term"/>
<QueryModifier type="replace” query="query term”
value="replacement term"/>

[0203] The type attribute defines either an augmentation or
replacement type query modification. The value attribute
includes the query term that is to be added to the user’s
original input search query, or that is to replace the input
search query. The query attribute is optional. If present, then
the context processor scans the search query and replaces the
any term matching the query term with the replacement tern.
This is useful, for example, to correct misspellings, expand
abbreviations (or contrawise use abbreviations in place of
terms), and other in place adjustments. If the query attribute
is missing, then the entry query string is replaced by the
replacement tern. Of course, the replacement term can
include any number of terms.

[0204] Query modification can made conditional on any of
the evaluation commands. For example:

<QueryModifier type=“augment” value="Digital SLR”>
<query.denot.InstanceOf>Digital SLR Camera</query.denot

>

</QueryModifer>

[0205] This example would reformulate a query, say the
query “D100” to include another query “Digital SLR” since
the term “D100” denotes an instance of a digital SLR
camera, according to the knowledge base file 904.

[0206] As another example:

<QueryModifier type="augment” value="Professional reviews”>
<user.property>professional </user.property>
</QueryModifer>

[0207] In this example, assume again the user’s query is
“D100.” Here, the properties of the current user are evalu-
ated. If the user is determined to be “professional”, based on
properties available from the browser, site activity history,
login and password, etc. For example, if the user access a
number of pages in the vertical content site dedicated to
professional or expert level information (e.g., detailed tech-
nical pages), then the user may be inferred to be a “profes-
sional” user, even though no other information is known
about the user’s identity. In this case, the query is reformu-
lated to include the term “professional reviews” even though
the user did not include these terms in the query.

[0208] These are but a few examples of a how a vertical
content provider can extend and improve the user’s queries
based on his own expertise and the flexible context process-
ing operations.

US 2007/0038616 Al
15

[0209] (iii) References to Related Contexts

[0210] A context file 902 can reference or include another
context file 902, as described above, to form an arbitrary
graph of connections. Several elements are used for refer-
encing context files.

[0211] A context file can include another context file, as
follows:

[0212] <«include scr=*path name”>

[0213] The include command references another context
file 902 as being included in the current context file. The
context processor will read the included context file and
process all of the instructions therein. Pathname identifies
the location of included context file 902. Included context
files 902 can be used for any type of context processing
operation.

[0214] A context file can also identify a related context
file, as follows:

<relContext href="path name”>
<anchorText>context description<anchorText>

</relContext>

and

<relContext href="path name”>context

description</relContext>

[0215] The relContext command identifies a related con-
text for the current context file. The relContext command
can be used in both pre-processing and post-processing
operations. Examples of the use of related contexts in
post-processing operations are illustrated in FIG. 9, and in
FIGS. 2 and 3. The context description is anchor text that the
user will see in the browser. When selected, the identified
related context file is retrieved and processed. The first type
of related context command is used to define related con-
texts for varying types of information needs. FIG. 2 illus-
trates this type of related context via related context links
204. The first link 204 there is associated with a related
context file 902 (e.g., context file 90/) that includes the
following instructions:

<relContext href=" /chooseCamera”>

<anchorText>If you are trying to decide which camera
to buy ...</anchorText>
</relContext>

[0216] This command is processed by the context proces-
sor when the link 204 on the anchor text is selected, and the
corresponding context file “cameras/chooseCamera” is
retrieved and processed. The resulting page is illustrated in
FIG. 3.

[0217] The relContext command may also be used with
the various types of evaluation commands, to make the
reference to the related context conditional. For example:

Feb. 15, 2007

<relContext href=" /chooseCamera”>
<query.denot.instanceOf>Digital SLRCamera</query.denot
.instanceOf>
<anchorText>If you are trying to decide which camera

to buy ...</anchorText>

</relContext>

[0218] Here, the related context DigitaISLRCamera is
accessed here only if the query.denote command evaluates
true, that is where the query terms denote an instance of a
model of digital camera listed in the knowledge base file
904. Similar conditional evaluations can be based on the
properties of the user or the properties of the search results.

[0219] The second type of related context command is
used to define related contexts that appear as annotations in
conjunction with search results. This type of related context
is illustrated in FIG. 2 by related context links 206. For
example, the related context file 90/ that generated FIG. 2
also includes the following instructions:

<relContext href="cameras/Manufacturer’>More Manufacturer
Pages</relContext>

[0220] Here, the anchor text “More Manufacturer Pages”
is then linked to the associated context file 902, which
contains further instructions to searching and displaying
pages for digital camera manufacturers.

[0221] The relContext command takes as an href any valid
URL, and thus, can also reference any available Internet site.
For example, the relContext command can directly link to an
online encyclopedia or dictionary to provide an annotation
for a search result that would provide a detailed explanation
of the result.

[0222] In pre-processing operations, a second type of
cross reference to related context is used, context redirec-
tion. The command format for the context redirection com-
mand is as follows:

<contextRedirect href="pathname”>redirection
condition* </contextRedirect>

[0223] Again, pathname indicates the location of another
context file to be processed if certain redirection conditions
are met. The redirection conditions (one or more as indicated
by “*”) can be based on any available information about the
query (e.g., query terms, or information dependent thereon),
the user (e.g., IP address, login, site click through history,
prior purchases), or other programmatically available infor-
mation.

[0224] 1In one embodiment the redirection conditions can
be based on the any evaluation commands previously dis-
cussed:

US 2007/0038616 Al

<query.denot.property>property__value</query.denot.property>
<query.denot.InstanceOf>class__id</query.denot.InstanceOf>
<query>query__term</query>

<user.property >property_ value</user.property>
<user.InstanceOf>class__id</user.instanceOf>

<result.tag>tag value</result.tag>
<result.tag.InstanceOf>class__id</result.tag. InstanceOf>

[0225] For example, assume the knowledge base file 904
portion described above. Further, assume the redirection
command:

<contextRedirect href="“Nikon_ cameras”>
<query.denot.Manufacturer>Nikon</query.denot. Manufact

urer>

</contextRedirect>

and the input search query “D100”.

[0226] As above, the query evaluation command is posi-
tively evaluated, since the query term “D100” matches the
name of a camera instance in the knowledge base file 904,
which instance has the Manufacturer property value
“Nikon”. The context processor thus executes the context
redirection command and accesses the context file “Nikon-
_cameras” for further processing. This capability allows the
vertical content provider to his or her own knowledge base
to analyze queries and reformulate them on behalf of the
user.

[0227] The user evaluation user.InstanceOf can likewise
be used to redirect context processing based on the particular
user properties. For example, consider the redirection com-
mand:

<contextRedirect href="“NegativeProfessionalReviews”>
<user.InstanceOf>Professional_ User</user.InstanceOf>
</contextRedirect>

[0228] Here, the properties of the user can be ascertained
from the knowledge base file 904, and other information as
described (e.g., site history). If the user is determined to be
a professional user, then the context processor accesses and
processes the NegativeProfessionalReviews context file.

[0229] As mentioned, any number of redirection condi-
tions (e.g. evaluations) can be used together in a context
redirection command such as:

<contextRedirect href="Recommended__SLR__cameras™>
<query.denot.megapixels>6mp</query.denot.megapixels>
<query.denot.megapixels
matchType="greaterThanOrEqualTo”>6mp</query.denot.megapixel
s>
<query.denot.megapixels
matchType="lessThanOrEqualTo”>8mp</query.denot.megapixels>
<query.denot.modelyear>2005</query.denot.modelyear>
</contextRedirect>

16

Feb. 15, 2007

which would effect the context redirection only when all of
the redirection conditions are satisfied, e.g., for a query
containing the terms which denote digital SL.R with between
6 mp and 8 mp, for the 2005 model year.

[0230] The context redirection is particularly powerful
when combined with the query modification rules, previ-
ously discussed. A vertical content provider can define a
number of context redirections based on query terms, each
of redirects the context processor to an appropriate context
file, depending on say, whether the query denotes shopping
for a camera versus seeking customer warranty information.
In the respective target context files, specific query modifi-
cation rules would then be processed to reformulate the
query as most appropriate given the identified context.

[0231] (iv) Restriction

[0232] In post processing operations, the context files can
be used to control the scope, number, or types of results and
entries that are provided to the user. To this end, the context
files can include conditional instructions that define various
types of restrictions (e.g., filters). These restrictions are
provided by the restriction command. This command has the
following syntax:

PTEE

<Restriction count="n">
restriction condition*
restriction action*®

</Restriction>

[0233] The restriction condition operates in a similar man-
ner to the redirection condition previously discussed. Here,
the restriction condition is evaluated with respect to the
attributes (tags), if any, associated with the search results, as
compared to the entries in the site/page annotation file. Any
attribute (or set of attributes) can be used as restriction
conditions, such as the type, source, year, location, of a
document or page, to name but a few. The context processor
receives the search results (here a set of candidate search
results) from the search engine, and compares each candi-
date result (be it a site, page, media page, document, etc.)
with the entries listed in the site/page annotation file 900.
Only those candidate results which are listed in the anno-
tation file 904 and have the specified matching attributes are
included in the context processed search results. The restric-
tion count is an optional parameter and indicates how many
of the matching results are to be included in the context
processed search results. If left out, then all matching results
are included.

[0234] The restriction action is an optional parameter that
specifies a further action to take if the restriction condition
is met. This action includes, for example, annotating the
search results with a link to a related context (using the
relContext command), such as links 206 illustrated in FIG.
2.

[0235] Consider the following example:

<Restriction count="2">
<descriptor>Review</descriptor>
<rank>5+</rank>

US 2007/0038616 Al

-continued

<relContext href="Reviews”>More Review</relContext>
</Restriction>
<Restriction count="2">

<descriptor>Guide</descriptor>

<rank>5+</rank>

<relContext href="Guides”>More Guides</relContext>
</Restriction>

[0236] Assume that the search query was a general query
on “digital cameras™, and that the search results returned
1,000,000 pages covering everything from manufacturers
and retailers of digital cameras, to online user forums and
services for printing photographs. Since the user’s search
was quite general, the vertical content provider can use the
post processing to provide a selection of a number of
different types of search results, as illustrated, for example
in FIG. 2. In processing the above code example then, the
first restriction command causes the context processor to
select the first two search results that have matching entries
(i.e., matching URLs or portions thereof) in the site/page
annotation file 900 and include the descriptor “Review”. The
context processor also uses the restriction action for the
related context, to annotate these two search results with a
link to related context-file “Reviews”, with the link labeled
“More reviews.”FIG. 2 shows an example of such annota-
tion link 206.

[0237] The second restriction causes the context processor
to select the first two search results that have matching
entries in the site/page annotation file and include the
descriptor “Guide.” The context processor would then use
the restriction action to annotate these results with a link to
the related context file “Guides.”

[0238] As mentioned previously, the context processing
operations can undertaken by multiple different entities in
the system, including at the client device, the vertical
content site, and the programmable search engine, each
using their own locally available context files. Thus, all of
the above describe features can be effectively integrated
within and between different system entities. For example, a
vertical context provider can define a context file that defines
various context redirections using the redirection condition
based on the global knowledge base files. This enables the
vertical content provider to leverage the global knowledge
base, but add their own personal perspective and judgment
to its underlying facts.

[0239] In post processing operations, the context file 900
can be used to control just the annotations that appear on a
search result, without changing the actual order of the search
results. To this end, the context files 900 can include
conditional instructions that define various types of annota-
tions. These annotations are provided by the annotate com-
mand. This command has the following syntax:

PTEE

<Annotate count="n">
annotation condition*
annotation action*

</Annotation>

[0240] The annotation condition operates in a similar
manner to the restriction condition previously discussed.

Feb. 15, 2007

Here, the annotation condition is evaluated with respect to
the attributes (tags), if any, associated with the search
results, as compared to the entries in the site/page annotation
file. Any attribute (or set of attributes) can be used as
annotation conditions, such as the type, source, year, loca-
tion, of a document or page, to name but a few. The context
processor receives the search results from the search engine,
and compares each result (be it a site, page, media page,
document, etc.) with the entries listed in the site/page
annotation file 900. Results that satisfy the condition are
annotated with the annotation action. Unlike the Restriction
command, the Annotate command does not cause any search
result to appear or not appear in the search results. Annotate
commands can be used by themselves or in combination
with any of the other commands, including Restrictions.

[0241] In avery simple implementation, the context file is
left implicit and only consists of Annotation commands,
where each result that is assigned a tag/label/annotation by
the annotation files is annotated with that label/annotation.
Further, the user may be ‘subscribed’ to a number of
annotation files or ‘feeds’, all of which are applied to the
user’s search results. In a further twist, the user can also
indicate that he would like the feeds used by another user to
also be applied to him.

[0242] (v) Search Engine Control Data

[0243] Finally, context files 902 can contain instructions
that control the operation of the programmable search
engine itself in terms the selection of which particular
document collections to be searched, and various algorith-
mic or parametric settings for the search engine. Selection of
a document collection for searching is provided by the
following command:

<Corpus ref=“document_ collection”>
//other context operations//
</Corpus>

[0244] The corpus command takes as its argument a
reference to the name (or ULR) or a selected document
collection. The document collection name is mapped (either
locally, or by the programmable search engine) to document
collection and corresponding index available to the pro-
grammable search engine (e.g. particular index in the con-
tent server/index 870).

[0245] The corpus command can be made conditional
using any of the foregoing described evaluation commands,
as well as including any of the restriction, redirection,
related context, and so forth. For example, a particular
document collection may be selected where the query is
determined using the evaluation commands to include cer-
tain keywords or instances of objects in the knowledge base.
Thus, a query that is evaluated to include a query term
denoting a scientific term, like “Heloderma suspectum”, or
a medical term, would then cause a selection of an appro-
priate scientific literature database.

[0246] Control of search engine parameters is via the
SearchControlParams operations. In general, most modern
search engines use a number of different attributes of a
search query and the individual indexed documents (e.g.,
frequencies of terms in URL, anchor text, body, page rank

US 2007/0038616 Al

etc.) to determine which documents best satisfy the query.
The documents are then ranked accordingly. A ranking
function is essentially a weighted combination of the various
attributes. Normally, the weights of the attributes are fixed,
or at least not externally controllable by third parties. The
SearchControlParam however gives vertical content provid-
ers access to these weights. The syntax is as follows:

<SearchControlParams>
<attribute-name>weight</attribute-name>
<attribute-name>weight</attribute-name>

</SearchControlParams>

[0247] Here, attribute-name is the name of the particular
attribute used by the search engine to calculate a relevance
ranking. The specific attribute names are disclosed by the
programmable search engine provider, since they are inter-
nal to that provider’s own engine. Typical attributes, as
indicated above including term frequency in URL, term
frequency in body, term frequency in anchor text, term
frequency in markup, page rank. The SearchControlParams
operator can work with any exposed attribute or parametric
control of a programmable search engine, and thus the
foregoing are understood to be merely exemplary. The
weights used in this operator can be either normalized or
non-normalized, and in the latter case, the input weights can
be internally normalized by the context processor or by the
search engine itself. A vertical content provider need not
specify weights for all the attributes the search engine uses,
but only those of interest to the provider of the context file.

[0248] The context files may take various embodiments.
In the some embodiments, the context files are individual
files stored in a file system. In other embodiments, the
context files are stored in a database system, again as either
separate files, or of database entries, tables or other struc-
tures. For example, a context file in database embodiment
may be stored as a collection of context records for an
identified source (e.g., a specific vertical content provider),
a type (e.g., knowledge base, site/page annotation, etc.),
associated commands (e.g., evaluation, restriction, redirec-
tion, relation, annotation, etc.), and remaining attributes and
conditions. Accordingly, no limitation is imposed on the
underlying implementation of the context files by the present
invention.

[0249] The present invention has been described in par-
ticular detail with respect to one possible embodiment.
Those of skill in the art will appreciate that the invention
may be practiced in other embodiments. First, the particular
naming of the components, capitalization of terms, the
attributes, data structures, or any other programming or
structural aspect is not mandatory or significant, and the
mechanisms that implement the invention or its features may
have different names, formats, or protocols. Further, the
system may be implemented via a combination of hardware
and software, as described, or entirely in hardware elements.
Also, the particular division of functionality between the
various system components described herein is merely
exemplary, and not mandatory; functions performed by a
single system component may instead be performed by

Feb. 15, 2007

multiple components, and functions performed by multiple
components may instead be performed by a single compo-
nent.

[0250] Some portions of above description present the
features of the present invention in terms of algorithms and
symbolic representations of operations on information.
These algorithmic descriptions and representations are the
means used by those skilled in the data processing arts to
most effectively convey the substance of their work to others
skilled in the art. These operations, while described func-
tionally or logically, are understood to be implemented by
computer programs. Furthermore, it has also proven conve-
nient at times, to refer to these arrangements of operations
as modules or by functional names, without loss of gener-
ality.

[0251] Unless specifically stated otherwise as apparent
from the above discussion, it is appreciated that throughout
the description, discussions utilizing terms such as “calcu-
lating” or “determining” or “identifying” or the like, refer to
the action and processes of a computer system, or similar
electronic computing device, that manipulates and trans-
forms data represented as physical (electronic) quantities
within the computer system memories or registers or other
such information storage, transmission or display devices.

[0252] Certain aspects of the present invention have been
described using commands, mnemonics, tokens, formats,
syntax, and other programming conventions. The particular
selection of the names, formats, syntax, and like are merely
illustrative, and not limiting. Those of skill in the art can
readily construct alterative names, formats, syntax rules, and
so forth for defining context files and programming the
operations a programmable search engine via context pro-
cessing.

[0253] Certain aspects of the present invention include
process steps and instructions described herein in the form
of an algorithm. It should be noted that the process steps and
instructions of the present invention could be embodied in
software, firmware or hardware, and when embodied in
software, could be downloaded to reside on and be operated
from different platforms used by real time network operating
systems.

[0254] The present invention also relates to an apparatus
for performing the operations herein. This apparatus may be
specially constructed for the required purposes, or it may
comprise a general-purpose computer selectively activated
or reconfigured by a computer program stored on a computer
readable medium that can be accessed by the computer. Such
a computer program may be stored in a computer readable
storage medium, such as, but is not limited to, any type of
disk including floppy disks, optical disks, CD-ROMs, mag-
netic-optical disks, read-only memories (ROMs), random
access memories (RAMs), EPROMs, EEPROMs, magnetic
or optical cards, or any type of media suitable for storing
electronic instructions, and each coupled to a computer
system bus.

[0255] The algorithms and operations presented herein are
not inherently related to any particular computer or other
apparatus. Various general-purpose systems may also be
used with programs in accordance with the teachings herein,
or it may prove convenient to construct more specialized
apparatus to perform the required method steps. The

US 2007/0038616 Al

required structure for a variety of these systems will be
apparent to those of skill in the art, along with equivalent
variations. In addition, the present invention is not described
with reference to any particular programing language. It is
appreciated that a variety of programming languages may be
used to implement the teachings of the present invention as
described herein, and any references to specific languages
are provided for disclosure of enablement and best mode of
the present invention.

[0256] Finally, it should be noted that the language used in
the specification has been principally selected for readability
and instructional purposes, and may not have been selected
to delineate or circumscribe the inventive subject matter.
Accordingly, the disclosure of the present invention is
intended to be illustrative, but not limiting, of the scope of
the invention, which is set forth in the following claims.

We claim:

1. A method of processing a search query for a-search
engine to provide a set of search results to the search query,
the method comprising:

receiving a search query for a user;

identifying at least one context file, the context file
including commands;

processing the search query using the commands in the
identified context file to produce a context processed
search query;

executing the context processed search query on a search
engine obtain a set of context processed search results;
and

providing the context processed search results to the user.

2. The method of claim 1, wherein processing the search
query using the commands in the identified context file
comprises:

programmatically altering the search query according to
the commands in the context file.
3. The method of claim 2, wherein programmatically
altering the search query comprises:

adding at least one term to the search query using query
modification commands specified in the context file.
4. The method of claim 2, wherein programmatically
altering the search query comprises:

replacing at least one term of the search query using query
modification commands specified in the context file.
5. The method of claim 2, wherein programmatically
altering the query according to the commands in the context
file comprises:

processing the context file on a client device from which
the query is received.
6. The method of claim 2, wherein programmatically
altering the query according to the commands in the context
file comprises:

processing the context file on a host system that received
the query from the user.
7. The method of claim 2, wherein programmatically
altering the query according to the commands in the context
file comprises:

processing the context file on search engine system
including the search engine.

Feb. 15, 2007

8. The method of claim 1, wherein processing the search
query using the commands in the identified context file
comprises:

programmatically altering execution of the search engine
according to search engine parameters in the context
file.
9. The method of claim 8, wherein programmatically
altering execution of the search engine comprises:

selecting at least one document collection specified in the
context file for searching using the search query.
10. The method of claim 8, wherein programmatically
altering execution of the search engine comprises:

selecting of one or more search engines specified in the
context file for processing the search query.
11. The method of claim 8, wherein programmatically
altering execution of the search engine comprises:

selecting at least one search algorithm parameter specified
in the context file for use by the search engine when
processing the search query.
12. The method of claim 1, wherein executing the context
processed search query on a search engine to obtain a set of
context processed search results includes:

programmatically altering the search results according to
the commands in the context file to produce the context
processed search results.
13. The method of claim 12, wherein programmatically
altering the search results comprises:

filtering the search results using a restriction filter speci-
fied in the context file.
14. The method of claim 12, wherein programmatically
altering the search results comprises:

ranking the search results using ranking parameters speci-
fied in the context file.
15. The method of claim 12, wherein programmatically
altering the search results comprises:

clustering the search results using clustering parameters
specified in the context file.
16. The method of claim 12, wherein programmatically
altering the search results comprises:

processing the search -results on a client device from
which the query is received, according to the com-
mands in the context file.
17. The method of claim 12, wherein programmatically
altering the search results comprises:

processing the search results on a host system that
received the query from the user, according to the
commands in the context file.
18. The method of claim 12, wherein programmatically
altering the search results comprises:

processing the search results on search engine system
including the search engine, according to the com-
mands in the context file.
19. The method of claim 12, wherein programmatically
altering the search results comprises:

providing at least one navigational link to another context
files, the navigational link specified in the context file.

US 2007/0038616 Al

20. The method of claim 19, further processing:

responsive to a user selection of the navigational link,

accessing the another context file and processing
another context file.

21. The method of claim 20, wherein processing the

another context file comprises at least of the operations of:

executing a search query on a search query phase speci-
fied in the another context file;

filtering the search results using filters specified in the
another context file;

ranking the search results using ranking parameters speci-
fied in the another context file;

clustering the search results using clustering parameters
specified in the another context file; and

annotating the search results using annotations specified
in the another context file.
22. The method of claim 12, wherein programmatically
altering the search results comprises:

annotating the search results using annotations specified
in the context file.
23. The method of claim 1, wherein identifying at least
one context file comprises:

identifying a context file based on the user.

24. The method of claim 1, wherein identifying at least
one context file comprises:

identifying a context file based on a host site from which
the query is received.

25. The method of claim 1, wherein identifying at least
one context file comprises:

identifying a context file based on at least one query term.

26. The method of claim 25, wherein identifying a context
file based on at least one query term comprises:

identifying a context file based on the at least one query
term denoting a class or instance of an object.
27. The method of claim 1, wherein processing the search
query comprises:

retrieving the context file from a host system from which
the search query was received.
28. The method of claim 1, wherein processing the search
query comprises:

retrieving the context file from a repository of cached

context files, each cached context file associated with a

host system from which the context file was received.

29. The method of claim 1, wherein processing the search
query comprises:

retrieving the context file from a repository of global
context files.

30. The method of claim 1, wherein processing the search
query comprises:

responsive to the context file including a redirection
command to another context file, processing the
another context file.

Feb. 15, 2007

31. The method of claim 1, wherein processing the search
query comprises:

responsive to the context file including a related context
command identifying a context file, annotating the
search results with a labeled link that causes processing
of the related context file.
32. The method of claim 1, wherein processing the search
query comprises:

responsive to the context file including a related context
command identifying a context file, annotating the
search results with a link to the related context file.
33. The method of claim 1, wherein processing the search
query comprises:

modifying the search query responsive to the search query

satistying a query evaluation command.

34. The method of claim 33, wherein the query evaluation
command comprises at least one a predetermined term to be
compared with at least one term of the search query.

35. The method of claim 33, wherein the query evaluation
command comprises at least one term of the search query
denoting an instance of an object defined in a knowledge
base.

36. The method of claim 35, wherein the search query
denotes an instance of an object defined in the knowledge by
matching a term of the search query with a value of a
property associated with the instance of the object.

37. The method of claim 33, wherein the query evaluation
command comprises at least one term of the search query
denoting a class of an object defined in a knowledge base.

38. The method of claim 37, wherein the search query
denotes a class of an objected defined in the knowledge by
matching a term of the search query with a value of a
property associated with the class of the object.

39. The method of claim 1, wherein processing the search
query comprises:

responsive to a property value of the user matching a

predefined user property, processing the search query.

40. The method of claim 1, wherein processing the search
query comprises:

responsive to a property value of the search query match-
ing a predefined object property, processing the search
query.
41. The method of claim 1, wherein processing the search
query comprises:

responsive to a property value of a search result matching
a predefined search result property, altering the search
result according to the commands in the context file.
42. The method of claim 1, wherein processing the search
query comprises:

responsive to a search result satisfying a restriction com-
mand included in the context file, including the search
result in the context processed search results.
43. The method of claim 1, wherein processing the search
query comprises:

responsive to a search result satisfying an annotation
command included in the context file, including an
annotation specified in the annotation command in the
processed search results.

US 2007/0038616 Al

44. The method of claim 1, further comprising:

executing at least one command from the context file, the
command selected from a group of commands consist-
ing of:

an query evaluation command for evaluating a property
value of a query with respect to a predefined prop-
erty;

a query modification command for modifying the
search query;

a related context command for identifying a related
context file in the context processed search results;
and

a redirection command for identifying a related context
file for processing.
45. The method of claim 1, further comprising:

executing at least one command from the context file, the
command selected from a group of commands consist-
ing of:

a corpus selection command for selecting a document
collection for searching with the search query; and

a search engine parameter command for establishing a
parameter of a search engine for processing the
search query.

46. The method of claim 1, further comprising:

executing at least one command from the context file, the
command selected from a group of commands consist-
ing of:

a restriction command for filtering the search results to
include only search results of a designated type in the
context processed search results; and

an annotation command for annotating the context
processed search results.
47. A method of processing a search query for a search
engine of a search engine system to provide a set of search
results to the search query, the method comprising:

receiving at the search engine system a search query from
a client device of a user;

executing the search query on a search engine obtain a set
of search results;

identifying at least one context file, the context file
including commands;

processing the search results at the search engine system
using the commands in the identified context file to
produce a context processed search results; and

providing the context processed search results to the client
device of the user.
48. The method of claim 47, wherein identifying at least
one context file comprises:

identifying a context file associated with a vertical content
provider to whom the user has subscribed.
49. The method of claim 47, wherein identifying at least
one context file comprises:

identifying the user of the client device;

accessing an account of the user;

Feb. 15, 2007

identifying from the account, a subscription to at least one
vertical content provider; and

identifying the context files associated with the identified
vertical content provider.
50. The method of claim 47, wherein identifying at least
one context file comprises:

identifying a context file based on the user.
51. The method of claim 47, wherein identifying at least
one context file comprises:

identifying a context file based on a host site from which
the query is received.

52. The method of claim 47, wherein identifying at least
one context file comprises:

identifying a context file based on at least one query term.

53. The method of claim 47, wherein processing the
search results at the host system using the commands in the
identified context file comprises:

programmatically altering the search results according to
the commands in the context file to produce the context
processed search results.
54. The method of claim 47, wherein programmatically
altering the search results comprises:

filtering the search results using a restriction filter speci-
fied in the context file.
55. The method of claim 47, wherein programmatically
altering the search results comprises:

ranking the search results using ranking parameters speci-
fied in the context file.
56. The method of claim 47, wherein programmatically
altering the search results comprises:

clustering the search results using clustering parameters
specified in the context file.
57. The method of claim 47, wherein programmatically
altering the search results comprises:

providing at least one navigational link to another context
files, the navigational link specified in the context file.
58. The method of claim 57, further processing:

responsive to a user selection of the navigational link,
accessing the another context file and processing
another context file.
59. The method of claim 47, wherein programmatically
altering the search results comprises:

annotating the search results using annotations specified
in the context file.

60. A method of processing a search query for a search

engine to provide a set of search results to the search query,
the method comprising:

receiving a search query of a user from a vertical content
provider site;

retrieving at least one context file associated with vertical
content provider site;

programmatically modifying the search query according
to the commands in the context file;

processing the modified search query to obtain a set of
search results;

US 2007/0038616 Al

programmatically altering the search results according to
the commands in the context file to obtain a set of
context processed search results; and

providing the context processed search results to the user.

61. A method of processing a search query for a search
engine to provide a set of search results to the search query,
the search engine being part of a search engine system, the
method comprising:

receiving a search query of a user from a vertical content
provider site;

retrieving at least one context file associated with vertical
content provider site, the at least one context file stored
in a repository of cached context files at the search
engine system;

programmatically modifying by the search engine system
the search query according to the commands in the
context file;

processing the modified search query with the search
engine to obtain a set of search results;

programmatically altering by the search engine system the
search results according to the commands in the context
file to obtain a set of context processed search results;
and

providing the context processed search results to the user.

62. A method of processing a search query for a search
engine to provide a set of search results to the search query,
the search engine being part of a search engine system, the
method comprising:

receiving a search query of a user;

pre-processing the search query to select a context file by
evaluating the search query with respect to a knowl-
edge base;

programmatically modifying the search query according
to the commands in the selected context file;

processing the modified search query with the search
engine to obtain a set of search results;

programmatically altering the search results according to
the commands in the selected context file to obtain a set
of context processed search results; and

providing the context processed search results to the user.

63. A method of processing a search query for a search
engine to provide a set of search results to the search query,
the search engine being part of a search engine system, the
method comprising:

at a vertical content provider site:
receiving a search query of a user;

pre-processing the search query to select a context file
by evaluating the search query with respect to a
knowledge base;

at the search engine system:

receiving from the vertical context provider-site the
search query and an identifier of the selected context
file;

retrieving the selected context file;

Feb. 15, 2007

programmatically modifying the search query accord-
ing to the commands in the selected context file;

processing the modified search query with the search
engine to obtain a set of search results;

programmatically altering the search results according
to the commands in the selected context file to obtain
a set of context processed search results; and

providing the context processed search results to the
user.

64. A method of processing a search query for a search
engine to provide a set of search results to the search query,
the search engine being part of a search engine system,
where the search query is received at a vertical content
provider site, the method comprising:

receiving from the vertical content provider site the search
query and an identifier of a context file;

retrieving the identified context file;

programmatically modifying the search query according
to the commands in the identified context file;

processing the modified search query with the search
engine to obtain a set of search results;

programmatically altering the search results according to
the commands in the selected context file to obtain a set
of context processed search results; and

providing the context processed search results to the user.
65. The method of claim 64, further comprising:

receiving from the vertical content provider site a plural-
ity of context files;

caching the received context files in association with an
identifier, so as to allow the context file to be retrieved
using the identifier received from the vertical content
provider site.

66. The method of claim 65, wherein receiving from
vertical content provider site comprises periodically and
automatically crawling the vertical content provider site and
copying the context files.

67. The method of claim 66, wherein receiving from
vertical content provider site comprises receiving the con-
text files via a registration interface.

68. A programmable search engine system, comprising:

a repository of cached context files, the context files
including commands for pre-processing a search query,
and post-processing search results from the search
query, selected ones of the context files associated with
vertical content provider sites;

a context server that receives an identifier of a vertical
content provider site from which a search query is
received and retrieves from repository at least one
context file associated with the vertical content pro-
vider site;

a context processor that modifies the search query accord-
ing to a pre-processing command in the retrieved
context file; and

a search engine the searches a document collection using
the modified search query to produce context processed
search results.

US 2007/0038616 Al

69. The programmable search engine system of claim 68,
wherein the context processor processes the context pro-
cessed search results according to a post-processing com-
mand in the retrieved context file.

70. The programmable search engine system of claim 68,
wherein the commands for pre-processing the search query
include at least one command from the group consisting of:

an query evaluation command for evaluating a property
value of a query with respect to a predefined property;

a query modification command for modifying the search
query;

a related context command for including a link to a related
context file in the context processed search results; and

a redirection command for identifying a related context
file for processing by the context processor.

71. The programmable search engine system of claim 68,

wherein the commands for pre-processing the search query

include at least one command from the group consisting of:

a corpus selection command for selecting a document
collection for—searching with the search query;

a search engine parameter command for establishing a
parameter of a search engine for processing the search
query.

72. The programmable search engine system of claim 68,

wherein the commands for post-processing the search results
include at least one command from the group consisting of:

a restriction command for filtering the search results to
include only search results of a designated type in the
context processed search results;

and

an annotation command for annotating the context pro-
cessed search results.

Feb. 15, 2007

73. A client system for modifying search queries and
search results, the system comprising:

a repository of user specific context files, the context files
including commands for preprocessing a search query
and commands for post-processing search results from
the search query; and

a context processor that receives a user search query from
the client system and that modifies the search query
according to a pre-processing command in at least one
of the user-specific context file, and provides the modi-
fied search query to a search engine, that receives from
the search engine a set of search results responsive to
the modified search query, and that processes the search
results according to a post-processing command in at
least one user-specific context file to produce context
processed search results.

74. A vertical content provider system, comprising:

a repository of context files, the context files including
commands for pre-processing a search query, and post-
processing search results from the search query;

a context server that retrieves from the repository at least
one context file in response to a search query received
from a client system; and

a context processor that modifies the search query accord-
ing to a pre-processing command in a retrieved context
file, and provides the modified search query to a search
engine via a search engine interface, that receives from
the search engine a set of search results responsive to
the modified search query, that processes the search
results according to a post-processing command in a
retrieved context file to produce context processed
search results, and that provides the context processed
search results to the client system.

#* #* #* #* #*

