a9y United States

Guha

US 20070038601A1

a2y Patent Application Publication (o) Pub. No.: US 2007/0038601 A1

43) Pub. Date: Feb. 15, 2007

(54) AGGREGATING CONTEXT DATA FOR
PROGRAMMABLE SEARCH ENGINES

(76) Inventor:

Correspondence Address:
GOOGLE / FENWICK
SILICON VALLEY CENTER
801 CALIFORNIA ST.

MOUNTAIN VIEW, CA 94041 (US)

(21) Appl. No.:

(22) Filed:

11/202,383

Aug. 10, 2005

Ramanathan V. Guha, Los Altos, CA
us)

504

Publication Classification

(51) Int. CL

GOG6F 17/30 (2006.01)
(52) US. €l oo 70773
(57) ABSTRACT

Search results are generated using aggregated context data
from two or more contexts. When two or more program-
mable search engines relate to a similar topic, context data
associated with the programmable search engines are aggre-
gated. The context is then applied to a query in order to
present, in an integrated manner, relevant search results that
make use of context intelligence from more than one pro-
grammable search engine.

Vertical Content Site
Vertical
Content
Files 502
Client : Direct
Query
T @ [—Que| 1
Vertical Vertical| 509 Y Conte
Context Content| SEI Query & Augmented
Files Server 1* Context ID Search
————I Add'l Results
Context IDs |
500 Yy \ 4
Programmable Search System 510
Front End
Server
1% Context ID,
¢ Client I%rj 2r Query] Que||-y & AE;?:;):;G
. Context IDs Search
530 1% Context for Resuits
Context Client, Query,
or Domain
Server Add’ll > 1101 520
[Contextips™ | Context Context
Addl Context(s) Aggregator Processor
A Reformed |
v Query Search
/_5_4_0\ [—Results
M—] —
Cached Global
Context Context
Files Files
% r,/
1
@ w
Context Context File
Registration Crawler Content
Interface Server/Index

Patent Application Publication Feb. 15,2007 Sheet 1 of 11 US 2007/0038601 A1
100

igiAlralrsflr.arg - ¥ozilla Firefox 1:]@@

digital - worg
Digital SLR information for lhe masses.

HomelFABSuddigital

o rer—rrry i g

:[Nikond100 |

SLR Confusion 104 ~ 106

The stew of new SLR bodies from giants Canon and Niken has had many of us in the

photographic community in a information frenzy. Canon released the Digital Rebel XT / 350D
and Nikon responded with the D70s and DSO,

i What doas the *s" behind the D70s stand for? How does it compare to the
soon-to-be-released D507 102

The answers at dpreview.
Lucion | Peemalink | Comments (0) | TrackBack (0}

Canon Comes to Grips

It's been a secret among Canon users, unwilling to concede to Nikon users, that the insertion
of a small piece of index card ints an obscure part of the battery compartment in the 20D
grip solves the problem of the premature low-battery warning.

Canon has finally owned up to it, and are offering free repairs at their customer service
_.centers. | just hooe thev won't paint the small ce of ind card black hoping vou won't see t"&i

’ﬁ. e J.W‘. ‘”"

Do ,E,’f)

é’i

|

Patent Application Publication Feb. 15,2007 Sheet 2 of 11 US 2007/0038601 A1

200

Loggedin s S¢p

Please raie digitalshrarg Seareh

. . Not good. Please dozft show this to ms again &
digitalslr.org Search ‘ : et S s tm ot o e i of s ©

204 [Fan it == g‘;p“: ‘msm Very good. Mako sy defeult for thess kind of pearches ©

H) ts decidewhich tobuy -
e ennntn- 208
Hysnalready ownons ...

Nikon USA: D100* /_\ 210

Information on thes Niken d100 digital camers, Where Lo purchase a nikon d100.
hitp/feww nikonuss comRemplats php?caia 1 & grps2& productNm2 ..
QOutdoor Photographer | October 2003 | Digital SLR Buying Guide™ :
- Lengtime Nikon users wil immedintaty feel st homs ot the hetmof a DIOD. 27
atp srore photogrept / /200300t digials .. 210
202 Nikcon Technical Support* /7210

\ Nikon Tech. Support. Nikon Knowiedge Base, announcsments, updates

it/ 2 o fo o s /ol a cfaiohalfandn

| [tedfoupe & - 210 206
e-Foto i D100 - Pho (—) \ :
PhotogrephyBLOG brings you the latest end greatest photography news, both film

hitpJfwrew.photogrephyblog comfind ! f..
: . 210
view*

Php L4 £
on D100 Review: 1. ; 0t0; Re

Niken D100 Revisw: I. Introduction: Digital Photography Review. Focus Camera

bitp/fwraw. dprevisw.convreviews/nikon d100/ E MR Vidpro Povz2000 Micon EN-ILY

Amaron com: Camera & Dhoto; Nikon D100 6MP Digital M&:’ 210
.. NIKON MB-D100 Multifunction Battery Pack for Nikon D100 Digitel SLR by Niken
W.m on/ exec/obidosRgldetail’//BIBIOSIKITov=g ..

iEd

e, e 1k e e B, i "

FIG. 2

Patent Application Publication Feb. 15,2007 Sheet 3 of 11 US 2007/0038601 A1

300

Tay this search on Googla . Loggedines Jep

. Please ram digitakshrarg Sewch
digitalslr.org Search ' Hok good. Plasse dectt shovw this to ms agein. O
®1n this context Usefid Show a2 en option for these kind of searches ©
Quesy: [kon G100] () @Up to GigiskorgSearch Very good. Meke it my default for thess kind of svarches O
304 ’ ~ OUptoOoogls Search

Read kil ty cdw.gen (7 Sitbiit Rafing:

Reviews, campls photographs ete. 308 Reoyal Cawera: D100
[~ Ofleex shuilar cameras § consider .. ekon D100 Digta? Ciaven W7
Relevant prodwet mews HET 945 Len
Outor Pt Ot 2031 Dl 15 B i =T .
... Longtima Nikon users will inmediately feel ot home o the helm of « DIOD. ... —
hitpshorew. oudaorphotogrep /A0 octidigitals . EnPOIZ O (1100 Camern Bolios
Mikon 1100 Review: 1. Introduction: Digital Photography Review*" im0 o D e
Nikan D100 Reviswr: 1. Introduction: Digital Photographiy Revisw, . Cuzn
: Mspdfaron. dgrevi e e .
: : ;o Adorama: D100 Body
302 Compare Prices and Read Reviews on Nikon D100 Digital Camera at .., * MNibw D10 Dighal SLE Canuns,
Epiriona hes the best isen shopping informetion 0o Nikea D100 Digtet Cemers. 306 5 Wgginl, Hsdeoeh Los,
\ hitp:ifrvw.epinions.com/Nikon_DI00_Cemsres . \ Slcs T Revieorr T
Nikon D100 revi y © 2004 R * D100 Camera Belies
... which is why the expensive Canon 1D is only for ematenruse end inferior to - REsOuence.coxa -
tittp/ferorw Xenrockwell.comfnikon/d100 btm
on Digital SLR Camera - D100 - Most Poputar #1*
. Heme > Niken Digital SLR Camers - Sampls Photo Qallerg > Nikon D100 ...
htp/Fervrer photos- of-the-yea faikon-dsld/ showgallery php ...
NikonUSA®
- Digital Imaging Muzketing Asoocistion Names the Niken DI0TIS) as One of The Most Innovative Digite]
Products At PMA 2002. Mar 25, 2002 &

FIG. 3

Patent Application Publication Feb. 15,2007 Sheet 4 of 11

US 2007/0038601 A1l
402
Client
409

406 - .

== Search [*— Query

Vertical Engi Query &

Content ngine 1% Context ID Context
onten Interf Augmented
erver Additional Context ID(s) earc

S nterface Search

(SEI) Results
408
1% Context ID, —
4 Client ID, or Query | Context .
1* Context for Processor
Client, Query,
or Domgin
410 , l
Context 1101
Server | qadditional Context ID(s)— Context
' Aggregator

- Additional Context(s)—-!

Search Engine
Parameters

Reformed

Query, Search

Results

404
Programmable
Search
Engine

FIG. 4

Patent Application Publication Feb. 15,2007 Sheet 5 of 11 US 2007/0038601 A1

504

Vertical Content Site
Vertical
Content
502
Client ' Dinect
Query
: @ : -—Que
Vertical Vertical| 509 v ot
Context Content] SEI Query & Aug?':e?:ed
Files - Server 1¥ Context ID Search
—————L Add'l Results
Context IDs—l
500 Yy Y
Programmable Search System 510
Front End
Server
1% Context ID, _ ’ ConAtext
Client 'D, or Query Query & Augmented
. T — Context IDs Search
530 1% Context for Results
Context Client, Query, A [
Server or Domain] 1 1 1 ’ 520
Add’l e —_—
“ContextiDs | Context Context
Add Context(s—| Aggregator Processor
ReformedJ
Query Search
l Results
Cached 550
Context Search
Files Engine
|
560 580
Context Context File
Registration Cramler Content
Interface Server/Index

FIG. 5

Patent Application Publication Feb. 15,2007 Sheet 6 of 11 US 2007/0038601 A1

602
Client
i
@_ 606 1 Context
Vertical Content Site | v/ertical | 609 | ooy a Augmented
—————— SE| [1% ContextID
Content ——Addl Context ID e
Server | ’_1
620
Vertical Vertical
Content e | ContextiD, __ | context
. Client ID, or Query Processor
Files :
w 1". Context for
Vertical [Ciep.ouen.s |
- Context -¢—Add’l Context IDs—
Vertical Server- '
Context o1
Files Context
Aggregator
L Add Contextl(s)—‘
A
Reformed Search
@ Query Resuits
Search
Engine v
System 650
Search
Engine

Coritent
Server/Index

FIG. 6

Patent Application Publication Feb. 15,2007 Sheet 7 of 11

703
Browser

Context
Augmented
Search
Results

Query

Qu

702
Client

Client
Context
Files

720
Context

Processor

1101

US

2007/0038601 A1

706
Vertical

Content
Server

Context

A A

I

, 1% Domain

704
ertical
Content
Site

/fﬁ

Vertical
Content
Files

Additional domains

Aggregator

700
Search
Engine

System

Search
Results

Reformed
Query

750

Search
Engine

Content
Server/Index

FIG. 7

Patent Application Publication Feb. 15,2007 Sheet 8 of 11 US 2007/0038601 A1

802b 802¢c
Client Client
803 803
Browser % Browser
802a TanT N
e 807 807
Client User 820 (. 8Y
User
803 Context Context
Browser Files Processpr CoDntext
— ~Data__
804a
Vertical Content
Site
806
o 809
Content SEI
890
800
Programmable Search Engine System
810
04b Front End Server
Vertical Content Site
830 820 850
@———_‘ : Context Context Search
Content % Server Processor Engine
Server]
840 C 842 > 870
Vertical Vertical Cached Global ~ Content
Content Context Context Context Server/
Files ~Files J_Files J (_Index
860 ss0 | (881
Context Context User
. 804c . Regis. File A t
Vertical Content Site Interface Crawler ccounts
) N
806 809 820
Content gé—l Vertical
Server Context
DR Processor
Vertical Vertical
Content Context
Files Files

FIG. 8

Patent Application Publication Feb. 15,2007 Sheet 9 of 11

900

A Search: nikon d100 - Microsoft Internet Explorer
fle Edit Vlew ngonta Tools Heb

O - © - ll(b;@*mﬁ'wfs@‘ﬁ 2E-DEs

US 2007/0038601 A1

i Add'ss I@ C:\Doauments ard Sem\gs\arad:woqelw Doqmmts\CBmts\GOOde\mSSI Context Aggregation\10551 Aggregation example himl

Google] @;.seard‘»@gmwiﬁym-'.;mmw\@mm,‘»
junks EDEnt E)sports @) amazon F)oeiprion) Digsis) FoundatonlP) Google 45) MDB @) InnitPotentals

@ Tohelpprotectyouseanw, IntemetE:qakrerhasrestn:tedmsﬁleﬁunsh:mngamvemnmtﬂuwmﬂa«essywcmwter Cid:heefor
options.

Search

Quer!,': {nikon d100 l [search]

L 204 . _gs1 o
:Web Search Results 110 of 1,397,876 results

If t g 10 decid wh h digita) cameraeaben:
~auare mn 2cecne From dpreview, dcresource, digitalsir and others™ |

Nik (:pomored &y Shopping.com)
From amazon com, Outpost and others 4/F\
951
20
Nikon USA: D100¥ 210
Information on the Nikon 4100 digital camera. Where to purchase a nikon d100. Features, specs rebates and more
Digital Cameras SLR Film Cameras S s Comparct Ci Underwater Photography Lenses Flash ...
httpa//aww.niki a ‘template.php?car=18grp=2&pro ... mm&%
202 Nikon Technical Support*

Nikon Tech. Supporn. Nikon Knowledge Base, announcements, updates

\ -hitp//support.nikontech.com/cgi-bin‘nikonusa.cfg’php/enduse ... Mors Suppert, Updatss, sc,

N . .
Nikon D70s Announced - PhotographyBLOG*
.. 300 images® on a single charge. The D70s can also be powered by the EN-EL3 battery used by the Nikon D100
and D70, or by CR2 batteries when using the optional battery holder (MS-D70). The controls are ...
hitpy//waw photographyblog.comindex phpiweblog/cormenis/nik AMore Comerronine
piio]
Outdoor Photographer | October 2003 | Digjtal SLR Buying Guide*
.. story. We'll also discuss some of the unique qualities of each camera. Sweet-Spot D-SLRs Nikon D100 Longtime
Nikon users will inmediately feel at honie at the hetm of a D100. The familiar controls of ...
http/faw. outdoorphotographer.com/content/2005. oct/digitals ... More Coigey) $i|
o]
9 C LR My Computer i

FIG. 9

Patent Application Publication Feb. 15,2007 Sheet 10 of 11 US 2007/0038601 A1

1001
Receive search query

l

1002 .
Identify first context for query

l

1003
|dentify one or more additional context(s)

l

1004
Aggregate contexts

l

1005
Preprocess query according to aggregated context

1006
Run query to obtain results

l

1007
Post-process results according to aggregated
context

I

1008
Provide results to user

- FIG. 10

Patent Application Publication Feb. 15,2007 Sheet 11 of 11 US 2007/0038601 A1
902a b ' 902¢
Context File for Context File for Context File for
Context Context Context
“Camera A” “Camera B” “Camera C”
.902d
ed 902f
Context File Context Flle for Context File
for Context
“ . Context For Context
Professional « « ”
User” Consumer” Owner
ser
902q 902i 902
Context File Context Flle for Context File for Context File
For Context Context Context For Context
“Professional “Looking for a “Shopping for “Technical
Reviews” Camera” Camera” Support’
9021 902m
902k Context File for Context File for
Context File Context Context
“For Context “Comparing “Comparing
All Reviews” Vendors” Prices”
’
Context File Context File cb/>
For Context
u For Context
Negative “W R 900
Reviews” ser Reviews” Site/Page
Annotation

FIG. 11

File
o
Oy, 2

904
Knowledge
Base
File

US 2007/0038601 Al

AGGREGATING CONTEXT DATA FOR
PROGRAMMABLE SEARCH ENGINES

CROSS REFERENCE TO RELATED
APPLICATIONS

[0001] This invention is related to the following copend-
ing patent applications, the disclosures of which are incor-
porated herein by reference:

[0002] U.S. patent application Ser. No. , filed on
the same date as the present application, for “Programmable
Search Engine” (attorney docket #10548);

[0003] U.S. patent application Ser. No. , filed on
the same date as the present application, for “Generating and
Presenting Advertisements based on Context Data for Pro-
grammable Search Engines” (attorney docket #10549);

[0004] U.S. patent application Ser. No. , filed on
the same date as the present application, for “Sharing
Context Data Across Programmable Search Engines” (attor-
ney docket #10550); and

[0005] U.S. patent application Ser. No. , filed on
the same date as the present application, for “Detecting
Spam Related and Biased Contexts for Programmable
Search Engines” (attorney docket #10552).

FIELD OF INVENTION

[0006] This invention relates in general to search engines,
and more particularly, to aggregating context data for pro-
grammable search engines.

BACKGROUND OF INVENTION

[0007] The development of information retrieval systems
has predominantly focused on improving the overall quality
of the search results presented to the user. The quality of the
results has typically been measured in terms of precision,
recall, or other quantifiable measures of performance. Infor-
mation retrieval systems, or “search engines” in the context
of the Internet and World Wide Web, use a wide variety of
techniques to improve the quality and usefulness of the
search results. These techniques address every possible
aspect of search engine design, from the basic indexing
algorithms and document representation, through query
analysis and modification, to relevance ranking and result
presentation, methodologies too numerous to fully catalog
here.

[0008] Regardless of the particular implementation tech-
nique, the fundamental architectural assumption for search
engines has been that the search engine’s operational model
is fixed and non-alterable by entities external to the system
itself. That is, the search engine operates essentially as a
“black box” that receives a search query, processes the query
using a preprogrammed search algorithm and relevance
ranking model, and provides the search results. Even where
the details of the search algorithm are publicly disclosed, the
search engine itself still operates only according to this
algorithm and nothing more.

[0009] An inherent problem in the design of search
engines is that the relevance of search results to a particular
user depends on factors that are highly dependent on the
user’s intent in conducting the searched (in other words, the
reason they are conducting the search) as well as the user’s

Feb. 15, 2007

circumstances (in other words, the facts pertaining to the
user’s information need). Thus, given the same query by two
different users, a given set of search results can be relevant
to one user and irrelevant to another, entirely because of the
different intent and information needs. Most attempts at
solving the problem of inferring a user’s intent typically
depend on relatively weak indicators, such as static user
preferences, or predefined methods of query reformulation
that are nothing more than educated guesses about what the
user is interested in based on the query terms. Approaches
such as these cannot fully capture user intent because such
intent is itself highly variable and dependent on numerous
situational facts that cannot be extrapolated from typical
query terms.

[0010] Consider, for example a user query for “Canon
Digital Rebel”, which is the name of a currently popular
digital camera. From the query alone it is impossible to
determine the user’s intent, for example, whether the user is
interested in purchasing such a camera, or whether the user
owns this camera already and needs technical support, or
whether the user is interested in comparing the camera with
competitive offerings, or whether the user is interested in
learning to use this camera. That is, the user’s situational
facts (e.g., whether or not they own the camera currently,
their level of expertise in the subject area), and their infor-
mation need (e.g., the type, form, level of detail, of the
request information) cannot themselves be reliably deter-
mined by either analysis of query terms, or resort to previ-
ously stored preference data about the user.

[0011] Another method of inferring intent is the tracking
and analysis of prior user queries to build a model of the
user’s interests. Thus, some search engines store search
queries by individual users, and then attempt to determine
the user’s interests based on frequency of key words appear-
ing in the search queries, as well as which search results the
user accesses. One problem with this approach is the
assumption that queries accurately reflect a user’s interests,
either short term or long term. Another is that it assumes that
there is a direct and identifiable relationship between a given
information need, say shopping for a digital camera, and the
particular query terms used to find information relevant to
that need. That assumption however is incorrect, as the same
query terms can be used by the same (or different users)
having quite different information needs. Furthermore, such
a technique is limited in its effectiveness because only one
type of data (prior searches) is used. Other contextual and
situational information is not captured or represented in
query history and cannot therefore be used in such a meth-
odology.

[0012] Perhaps because in part of the inability of contem-
porary search engines to consistently find information that
satisfies the user’s information need, and not merely the
user’s query terms, users frequently turn to websites that
offer highly specialized information about particular topics.
These websites are typically constructed by individuals,
groups, or organizations that have expertise in the particular
subject area (e.g., knowledge about digital cameras). Such
sites, referred to herein as vertical content sites, often
include specifically created content that provides in-depth
information about the topic, as well as organized collections
of'links to other related sources of information. For example,
a website devoted to digital cameras typically includes
product reviews, guidance on how to purchase a digital

US 2007/0038601 Al

camera, as well as links to camera manufacturer’s sites,
price comparison engines, other sources of expert opinion
and the like. In addition, the domain experts often have
considerable knowledge about which other resources avail-
able on the Internet are of value and which are not. Using his
or her expertise, the content developer can at best structure
the site content to address the variety of different informa-
tion needs of users.

[0013] However, while such vertical content sites provide
extensive useful information that the user can access to
address a particular current information need, the problem
remains that when the user returns to a general search engine
to further search for relevant information, none of the
expertise provided by the vertical content site is made
available to the search engine. Many vertical content sites
provide a search field from which the user can access a
general search engine. This field is merely used to pass a
user’s search query back to the general search engine.
However, none of the expertise that is expressed in the
vertical content site is directly available to the general search
engine as part of the user’s query in order to provide more
meaningful search results. The expert content developer has
no formal, programmatic way of passing information to the
general search engine that expresses his or her expertise in
their particular knowledge site.

[0014] In other words, there are no contemporary search
engines that can be programmed by external entities, such as
vertical content sites, during the search process itself, in way
that can enhance the search process with the expertise of the
content developer of the vertical content site.

[0015] Furthermore, there is generally no mechanism for
aggregating context data that has been harvested from a
number of programmable search engines. Furthermore,
there is generally no mechanism for automatically determin-
ing how to redirect and/or process search queries in accor-
dance with programmable search techniques, even when the
user has not entered the query at a vertical search site.
Finally, there is no mechanism for leveraging aggregated
context data in order to determine how to redirect and/or
process search queries.

SUMMARY

[0016] A user’s query is processed using context informa-
tion. Processing can include any combination of pre-pro-
cessing operations (conducted prior to query execution) and
post-processing operations (conducted on the search results
from query execution). The pre-processing operations
include operations to revise, modify or expand the query, to
select one or more document collections on which to con-
duct the search, to set various search algorithm parameters
for evaluating the query, or any other type of operation that
can refine, improve, or otherwise enhance the quality of the
user’s search query. The context-processed query is then
executed by a search engine to obtain a set of search results.
The post-processing operations applied to the search results
include operations to filter, organize, and annotate the search
results as well as provide links to related contexts for other
types of information or information needs. The context
processing operations can be provided by a programmable
search engine site, by a vertical content provider site, or by
a client device. The context processing operations are con-
trolled by context files that include commands, parameters,

Feb. 15, 2007

and instructions. The context files may be stored at the
programmable search engine site, at various vertical content
providers, or at a client device. Context files from multiple
different sources can be used jointly. Context processing can
also be limited to either pre-processing, or post-processing.
The selection of which context files to apply to a given user
query or a set of search results can be based on the query, the
user, the client device, the vertical content site from which
the query was received. The selection may be based as well
on one or more subscriptions that a user has to particular
vertical content providers, or popularity or reputation of a
vertical content provider.

[0017] According to one aspect of the present invention,
context data harvested from a number of programmable
search engines are aggregated when appropriate (for
example, when the programmable search engines all relate
to a similar topic). Correspondences among programmable
search engines are identified. For each such correspondence
set, the system of the present invention merges the filters and
annotations associated with the context in each of the
correspondence classes. In one aspect, this is done by
generating the result set from each of the contexts and
merging them, using for example a rank aggregation tech-
nique to determine the order of the results in the resulting
answer set. In this manner, the system of the present
invention is able to present, in an integrated manner, relevant
search results that make use of context intelligence from
more than one programmable search engine.

[0018] According to one aspect of the present invention, a
search engine automatically determines how to redirect
and/or process a search query in accordance with program-
mable search techniques, even when the user has not entered
the query at a vertical search site. Thus, the invention is able
to provide improved search results that make use of context
intelligence, even when the query is entered at a general
search site.

[0019] According to one aspect of the present invention, a
search engine uses aggregated context data to determine
how to redirect and/or process search queries.

[0020] The invention also has embodiments in computer
program products, systems, user interfaces, and computer
implemented methods for facilitating the described func-
tions and behaviors.

BRIEF DESCRIPTION OF THE DRAWINGS

[0021] FIG. 1 illustrates a page from a host domain having
a search field for accessing the programmable search engine.

[0022] FIG. 2 illustrates the results of a search from the
host domain.

[0023] FIG. 3 illustrates a further page accessed from the
search results page.

[0024] FIG. 4 illustrates a generalized system architecture
for a programmable search engine including context aggre-
gation functionality.

[0025] FIG. 5 illustrates a first system architecture for a
programmable search engine.

[0026] FIG. 6 illustrates a second system architecture for
a programmable search engine.

US 2007/0038601 Al

[0027] FIG. 7 illustrates a third system architecture for a
programmable search engine.

[0028] FIG. 8 illustrates a combined system architecture
for a programmable search engine.

[0029] FIG. 9 is a screen shot showing an example of
search results that use aggregated contexts, according to one
embodiment.

[0030] FIG. 10 is a flowchart illustrating a method for
aggregating contexts according to one embodiment.

[0031] FIG. 11 illustrates an example of a set of context
files.

[0032] The Figures depict various embodiments of the
present invention for purposes of illustration only. One
skilled in the art will readily recognize from the following
discussion that alternative embodiments of the illustrated
and described structures, methods, and functions may be
employed without departing from the principles of the
invention.

DETAILED DESCRIPTION

Introduction to Programmable Search

[0033] Referring now to FIGS. 1-3, there is shown an
example of the user experience in using a programmable
search system in accordance with an embodiment of the
present invention. In FIG. 1 there is shown a page 100 from
a host site, digitalslr.org, which is an example of a vertical
content site, here the field of digital cameras. Content and
organization of page 100 reflect the viewpoint and knowl-
edge and of the entity that provides the site content. A
vertical content site can be on any topic, and offer any type
of information, and thus is not limited in that regard. For
example, vertical content sites include sites on particular
technologies or products (e.g., digital cameras or comput-
ers), political websites, blogs, community forums, news
organizations, personal websites, industry associations, just
to a name a few. What vertical content sites offer is a
particular perspective and understanding of the world, one
that may be of interest and value to some users. This
perspective and understanding can be expressed, at least in
part, by the content provider’s organization and selection of
content, as well as commentary, analysis or links to other
content (e.g., commentary on other sites on the Internet).
Indeed, one valuable aspect of vertical content sites is the
particular collection of links to other sites that the content
developer has judged to be useful in some regard, either for
its depth, expertise, viewpoint, or the like. That is, users in
general find value in the judgments of vertical content
providers as to the usefulness of other sources of informa-
tion on the Internet.

[0034] The host site includes a web server for serving
pages, like page 100, to client devices. The pages are stored
in some repository, such as a database, collection of file
directories, or the like. Thus, for example, the page 100
includes commentary on the latest camera offerings from
various companies, as well as a link 102 to another site with
relevant information about digital cameras. Of interest in
this example is the search field 104, which allows the user
to search the Internet using a general search engine system
(not shown), such as the Google® search engine provided by
Google, Inc. of Mountain View, Calif. (of course in other

Feb. 15, 2007

embodiments, other search engines may be used). The user
enters a search query in the search field 104. Here, the query
is “Nikon d100”.

[0035] Activating the search button 106 causes the web
server to transmit the search query to the search engine
system using existing web protocols. In this example
embodiment, in addition to the search query, the host site
web server transmits a context file to the search engine
system. Alternatively, the web server can transmit a link to
the context file, or simply a context file identifier. The
context file includes data that the search engine system uses
to control the operation of the search engine itself in
processing the search query and in presenting the search
results, in effect, programming the search engine’s opera-
tion. Thus, the context file, as will be further detailed below,
can be understood as a set of instructions to the search
engine system for processing a particular search query. The
instructions can control, for example, three aspects of the
search process: 1) pre-query processing operations; 2)
search engine control information; 3) post-query processing
operations. In addition, a context file can optionally include
descriptions of (or links to) other context files, which
likewise provide further programmatic control of the search
engine system.

[0036] An advantage of the present invention is that the
context information provides guidance as to how to tailor
search results so that the results better suit the user’s needs.

[0037] FIG. 2 illustrates an example of a search results
page 200 that is provided to the user’s client device follow-
ing processing of the context file and the search query. This
page 200 includes a set of search results 202 that satisfy the
search query, as well as additional information. First, there
is displayed a name of the current context 208 that has been
provided to the search engine system. In one embodiment
this name is a description that the vertical content site
developer has given to express the type of information need
or contextual circumstances that pertains to the current
search query. Here, for example, the current context 208 is
for a “Camera Model”, since the search query matched a
specific camera model name as determined by processing of
the context file. This context operates as the entry point for
a user seeking information about a particular camera model.

[0038] Second, a number of links 204 are provided as
navigational aids to further pages that address different
possible information needs of the user. Each of these links
204 is associated with a related context file, which will
provide further instructions to the search engine system to
tailor further stages in the search process for a specific
information need, and thereby construct the desired pages.
For example, the first link, “If you are trying to decide which
camera to buy”, addresses a specific type of user information
need: information about how to purchase a camera, com-
parisons between camera, pricing information, and the like.
This need derives from a specific type of user intent,
specifically the intent to purchase a camera. The second link,
“Where to buy this camera from . . . ”, addresses a different
and more specific information need: the location of vendors
for that particular camera. The last link, “If you already own
one . .. ”, addresses another type of information need:
information that a current own would want, such as technical
support and service information.

[0039] Page 200 also includes links 206 to other related
contexts as well, such as “More Manufacturer Pages”,

US 2007/0038601 Al

“More Guides”, “More Reviews”, and so forth. These links
each invoke a particular context in which the vertical content
provider has characterized particular sites and pages, and
then defined a filter for the search engine to select pages with
the matching characteristics when processing the reformu-
lated search query.

[0040] For example, the vertical content provider has here
previously identified a number of different sites or pages on
the Internet as being variously manufacturer sites, product
review, buying guides, and so forth (e.g., according to the
type of site). The vertical content provider can label (or tag)
a site with any number of category labels. The labels can
describe any characteristic that the vertical content provider
deems of interest, including topical (e.g., cameras, medicine,
sports), type (e.g., manufacturer, academic, blog, govern-
ment), level of discourse (e.g., lay, expert, professional,
pre-teen), quality of content (poor, good, excellent), numeri-
cal rating, and so forth. The ontology (i.e., set of labels) used
by the vertical content provider can be either proprietary
(e.g., internally developed) or public, or a combination
thereof.

[0041] For example, in this example, the vertical site
provider has previously identified a number of sites as
containing product reviews, and has stored this information
in a context file. The link 206 to “More reviews” automati-
cally instructs the system engine system to use this context
file to filter the search results during post-processing to those
pages that are from sites characterized as product reviews,
and satisfying the reformulated query.

[0042] Fourth, the page 200 includes various annotations
210 in conjunction with various ones of the search results.
These annotations 210 provide the user with the viewpoint
or opinion of the vertical content provider about the par-
ticular search result, as to any aspect of that search result that
the provider considers significant, such as what the identi-
fied search result is about, how useful it is, or the like.

[0043] The placement, naming, and sequencing of the
various links 204, 206 are themselves defined in the context
files. This gives the vertical content provider control over the
organization and presentation of the search results, which in
and of itself represents that provider’s particular perspective
and determination of what are the user’s likely information
needs, and how the search results should be organized to
satisfy those needs, and which related contexts should
appear in response to each level of search by the user.

[0044] FIG. 3 illustrates an example page 300 that is
provided to the user as a result of clicking on the first link
204, “If you are trying to decide which camera to buy.” The
context file associated with this link 204 is processed, and a
second search is performed on the search query. This page
300 shows the context name 308“Choosing a camera”,
which again reflects the selected information need of the
user. The search results 302 in this context are more spe-
cifically tailored to assisting the user in evaluating digital
cameras and selecting a satisfactory one. Notice, for
example, the first search result is to a buying guide for digital
cameras, and that there are no search results shows shown
here to technical support pages.

[0045] Above the search results 302 are links 304 to
further related contexts based on information needs, such as
“Reviews, sample photographs”, “Other similar cameras to

Feb. 15, 2007

consider”, and “Relevant product news”. Again, these links
have associated context files that will control the search
engine system to provide search results that are relevant to
the described information needs for these contexts. Next to
the search results are additional links 306, which are also to
related contexts, and for example to further professional and
user reviews of digital cameras, sample photographs, and
other information particularly relevant to evaluating a cam-
era for purchase.

[0046] The user can thus continue to access additional
related content through the various links 304, 306, each time
obtaining search results that have been processed according
to the context files associated with the selected links. In this
way, the user can essentially search the Internet using the
powerful capabilities of a general search engine, while
simultaneously obtaining the benefit of the knowledge,
expertise, and perspective of the provider of the vertical
content site. Vertical content site providers benefit from this
approach as it allows them to further share their knowledge
and perspective with users. Vertical content providers are no
longer limited to the information that they can either create
themselves, provide links to, or comment upon.

[0047] In one embodiment, the method of the present
invention is used for presenting search results generated by
vertical search engines (VSEs) even when the user entered
the search query at a general search site (such as google-
.com). Thus, searches entered at general sites can yield
results that are informed by vertical content sites. In one
embodiment, each VSE is characterized by a set of query
terms for which it applies. Based on these query terms
and/or other factors surrounding the query and the user, the
system of the present invention automatically determines
how to redirect and/or process a search query, including
enhancing results based on results from VSEs. Thus, the
invention is able to provide improved search results that
make use of context intelligence, even when the query is
entered at a general search site. In this manner, the present
invention integrates access to high-quality vertical search
engines (and their results) into an interface for a general
search engine, so as to improve the search experience even
for those users who have not yet used (and may not even be
aware of) these vertical search engines.

[0048] For example, links to relevant VSEs can be pro-
vided on a search results page, thus providing the user with
an easy way to access improved search results by simply
clicking on a VSE link. Should the user do so, the query is
run at the VSE corresponding to the link. In one embodi-
ment, a recommendation and reputation network is used to
select the set of VSEs presented to the user (highly-recom-
mended VSEs are favored over less-recommended ones).

[0049] According to one embodiment, context aggrega-
tion is performed so that a single link can provide access to
results from two or more VSEs. Referring now to FIG. 9,
there is shown an example page 900 providing access to
search results that use aggregated contexts according to one
embodiment. Here, links 204 provide access to search
results obtained using context information from more than
one vertical content site. For example, the first link 204 (“If
you are trying to decide which digital camera to buy”)
provides search results obtained using context information
from websites including dpreview, dcresource, digitalslr,
and others. The fourth link 204 (“Accessories, Manuals,

US 2007/0038601 Al

etc.”) provides search results obtained using context infor-
mation from websites including amazon.com, Outpost, and
others. In one embodiment, an onscreen tag 951 can be
displayed to indicate the sources of the aggregated context
information. In one embodiment, tag 951 can be presented
as a rollover tooltip that appears when the user causes the
cursor to hover over the link 204. In other embodiments, tag
951 can take another form or be shown in a different manner,
or it can be omitted altogether.

[0050] The technique illustrated in FIG. 9 provides several
advantages. If several vertical content sites exist for a
particular type of query (such as deciding which digital
camera to buy), the user is not forced to choose one
particular website to be the source of search results. Instead,
the user can see search results corresponding to all of the
vertical content sites that are relevant to the type of query the
user is interested in. In the example of FIG. 9, the user can
see, with a single click, relevant search results from a
number of websites that all specialize in providing digital
camera purchasing guidance. Thus, the expertise from a
number of different vertical content providers can be com-
bined and shown within a single set of results.

[0051] Each link 204 can provide access to search results
from any number of vertical content sites. As will be
described in more detail below, the present invention auto-
matically determines which vertical content sites have con-
texts that are suitable for aggregation with one another. In
this manner, the present invention reduces the effort on the
part of the user for in searching for valuable information
given the user’s current state, purchasing position, activity,
and/or other characteristics.

[0052] With the capabilities of the present invention, ver-
tical content providers can define any variety of context files
to meet any type of information need that users may have.
The providers of the general search engine system are no
longer burdened with the task of themselves organizing and
categorizing content (as is conventionally done in various
directories and portals), but instead can rely upon the much
deeper and vaster pool of vertical content providers hun-
dreds of millions or more—as compared with the limited
pool of editors that may organize content directories or
categorize other websites for a general search engine. The
present invention thus provides any vertical content site
provider with the capability to programmatically control the
general search engine system on behalf of a user conducting
a search. In addition, by aggregating contexts in the manner
described herein, the present invention provides a mecha-
nism by which search results associated with different
contexts can be shown together.

System Overview

[0053] FIGS. 4 through 8 illustrate a number of different
system architectures in which the present invention can be
employed. These architectures generally vary in terms of
which entities provide the context files and which entities
processes the context files to control the search process and
search result presentation. In general, the context files can be
provided by any system entity (e.g., any of a client device,
a host vertical site, or the search engine system), and can
likewise by processed by any system entity, or any combi-
nation there.

[0054] Referring first then to FIG. 4, there is shown a
generic system architecture for providing context aggrega-

Feb. 15, 2007

tion. In this system architecture, there is a client device 402,
a content server 406, context server 410, a context processor
408, and a programmable search engine (PSE) 404.

[0055] The client 402 can be any type of client, including
any type of computer (e.g., desktop computer, workstation,
notebook, mainframe, terminal, etc.), handheld device (per-
sonal digital assistant, cellular phone, etc.), or the like. The
client device 402 need only have the capability to commu-
nicate over a network (e.g. Internet, telephony, LAN, WAN,
or combination thereof with the PSE 404. Typically, a client
device 402 supports a browser application, and the appro-
priate networking applications and components, all of which
are known to those of skill in the art. The client device 402
may include as well a search engine interface that allows it
to directly query the PSE 404.

[0056] The user of the client 402 constructs and transmits
a search query to the PSE 404, via the content server 406,
which includes a search engine interface (SEI) 409. This can
be via a search query field on a host site that includes the
content server 406, along with an underlying link to initiate
processing of the input text and forwarding the results
thereof to the PSE 404, as illustrated in FIG. 1. The content
server 406 selects an appropriate context file, as identified by
a context ID. The selection of the context file can be based
on the query itself, the client device 402, the user identifi-
cation, default selection parameters, user site behavior (e.g.,
page accesses, dwell times, clicks) or other information
programmatically available to the content server 406. The
context ID may be a URL, a unique context name, a
numerical ID, or some other form of reference to the context
file.

[0057] The content server 406 transmits the query along
with the context ID to the context processor 408. Alterna-
tively, content server 406 can provide the identified context
file directly to the context processor. Depending on the
embodiment, the content server 406 may also be responsible
for serving content pages to the client device 402.

[0058] In one embodiment, the content server 406 trans-
mits more than one context ID (and/or context file) to the
context processor 408. Thus, for example, if more than one
vertical content site is appropriate for the entered query, the
content server 406 may provide URLs (or other context file
identifiers) corresponding to each.

[0059] The context processor 408 uses the received con-
text IDs to obtain the identified context files from the content
server 410. In one embodiment, the context processor 408
identifies additional context IDs appropriate to the query, for
example by providing an identifier of the client device 402
(e.g., IP address, browser type, operating system, device
type), the user (e.g., user ID), or host domain from which the
search query is received, or the search query itself, to obtain
further context files from the context server 410.

[0060] As discussed above, a context file (or collection of
context files) can include, for example, three types of
programmatic information that can be used in any combi-
nation by the context processor 408 and/or PSE 404 to
control the search process. These are: 1) pre-query process-
ing operations; 2) search engine parameter control; and 3)
post-query processing operations. This programmatic infor-
mation will be discussed as part of the operational flow.

[0061] The context files may take various embodiments.
In the some embodiments, the context files are individual

US 2007/0038601 Al

files stored in a file system. In other embodiments, the
context files are stored in a database system, again as either
separate files, or of database entries, tables or other struc-
tures. For example, a context file in database embodiment
may be stored as a collection of context records for an
identified source (e.g., a specific vertical content provider),
a type (e.g., knowledge base, site/page annotation, etc.),
associated commands (e.g., evaluation, restriction, redirec-
tion, relation, annotation, etc.), and remaining attributes and
conditions. Accordingly, no limitation is imposed on the
underlying implementation of the context files by the present
invention.

[0062] The context processor 408 processes the context
files to perform various pre-processing operations, to pro-
grammatically generate a reformulated query. These pre-
processing operations may be performed independently or in
any combination to obtain a reformulated query. These
include the following:

[0063] a) Query revision: the modification, addition, or
deletion of or one or more terms of the original query. Such
modifications include correcting spelling errors, replacing
query terms, adding query terms (as conjuncts, or as dis-
juncts) or deleting query terms (e.g. stop word removal). The
added or replaced terms may broaden or narrow the scope of

a query.

[0064] b) Creation of additional queries: For example,
given an original search query of “digital SLR”, an addi-
tional query may be “digital camera”. In one embodiment,
these additional terms are incorporated into the search query
as disjunctive phrases. In another embodiment, each of these
additional queries is a separate query that potentially has its
own filters, ranking, and the like.

[0065] These types of query reformulations are expressed
in the context file as a series of query rewrite rules. The
query rewrite rules generally define an output query (or
query term) based on matching one or more terms of the
original query (e.g., replace “digicam” with “digital cam-
era”). Other rules may be applied automatically as defaults,
without being conditioned on the terms of the query.

[0066] The second type of control information processed
by the context processor 408 are search engine control data.
These include:

[0067] a) selection of one or more search engines for
processing the reformulated search query. The PSE 404 may
include any number of different search engines, each of
which is optimized for certain types of searches. For
example, different search engines are typically used for text
searches, image searches, and audio searches. A search
engine typically will generate an information retrieval score
for various documents in terms of their relevance to the
search query. A context file can specify which search engine
or engines is/are to be used (e.g., by identification of
particular URLs for the search engines). A single search can
integrate results from different engines. The context proces-
sor 408 extracts the identified search engine(s), and con-
structs the appropriate query string using the reformulated

query.

[0068] b) selection of one or more search document col-
lections on which to search. A search engine system will
typically have access to multiple different document collec-
tions, which can be searched jointly, or individually. The

Feb. 15, 2007

provider of the context file may instruct the PSE 404 to use
one or more specific document collections for a particular
search. For example, a vertical content site for healthcare
professional, may receive a search for “migraine”, and
instruct the search engine system to search the PubMed
database provided by the National Library of Medicine,
rather than a more general search of the Internet. This
constraint better tailors the results to the medical literature
most likely to be relevant to the information need of a
healthcare professional, rather than the typical results to
such a query on the Internet. The context file can specify
which document collections are to be used (e.g., by speci-
fication of a database, index, or other context repository).
The context processor 408 extracts this information from the
context file as well, and passes it the selected search engine
as a parameter.

[0069] c) specification of search engine parameters for use
during query processing. Most search engine algorithms
operate under a large number of parameterized controls
when generating information retrieval scores, such as
threshold values for scoring query term matches, iteration
cycles, waiting of links, terms and other query or document
attributes. Normally, these parameters are not accessible to
entities outside of the search engine system, but rather are
fixed by the search engine provider. However, in some
embodiments of the present invention, the search engine
system may be configured to receive and use any of these
types of parameters, thereby giving further incremental
programmatic control of the search engine to the vertical
content developments. Again, the context processor 408
extracts these parameters from the context file and passes
them to the search engine 404 as parameters.

[0070] Where more than one context is provided to the
context processor 408, the context aggregator 1101 com-
bines the various contexts received from context server 410
before the reformulated query is passed to the PSE 404. In
one embodiment, the context processor 408 itself identifies
additional contexts to be included in the aggregation.

[0071] In one embodiment, context aggregator 1101 is
implemented as a component of the context processor 408.
In another embodiment, it is implemented as part of PSE 404
or as a separate component. In one embodiment, aggregation
includes generating a reformulated query that combines, in
an additive manner, various parameters specified in the
individual contexts. For example, if a first context adds a
first term to a query, and a second context adds a second term
to the query, the aggregated context adds both terms to the
query. As another example, if a first context specifies a
search engine or search document collection, and a second
context specifies a second search engine or document col-
lection, the aggregated context includes both search engines
or document collections. The context aggregator 1101 also
removes duplicate terms, search engines, document collec-
tions, or other characteristics of contexts, so as to improve
efficiency and reduce undue weighting.

[0072] The context-processed query, which includes the
reformulated query and the search engine control data (if
any) that are specified in the context file, is thus provided to
the PSE 404. If multiple queries are constructed during
pre-processing, the context processor sends each of the
multiple queries and their associated search engine control
data (which may be individually varied) for each additional

query.

US 2007/0038601 Al

[0073] The PSE 404 processes the reformulated query
using the search engine control data (if any) to obtain a set
of context-processed search results, and provides these
search results to the context processor 408. If multiple
queries are processed, then the PSE 404 can merge the
results from these searches.

[0074] The context processor 408 then provides various
post-processing operations, which again may be performed
independently or conjointly. The results of this post-pro-
cessing made part of the context-processed search results.
The post-processing operations include:

[0075] a) filtering the context-processed search results
using filters specified in the identified context. The context
file may specify one or more filters that the context processor
408 can apply to further limit the documents that are
included in the search results. These filters are expressed in
terms of rules that match metadata with particular metadata
associated each search result. The metadata can include both
native metadata to the document, such the document type,
date, author, site, size, or labeled metadata associated with
the document, that is the labeled characteristics provided by
the vertical content provider (or others).

[0076] For example, the filters may be defined to exclude
documents of certain types (either physical types, e.g.,
image files, or logical types, e.g., “reviews”), from particular
sites or internet domains (e.g., documents from the .biz or
.gov domain), websites, or of a certain vintage (e.g., docu-
ments published before Mar. 3, 2005). Referring back then
to the example of FIG. 3, the link 306 for “More Profes-
sional reviews” would invoke a filters defined to select only
documents labeled as “professional”, “product reviews”.
Again, these labels can be provided by the vertical content
provider from which the original query was sourced, or from
some other source. These options will be more fully dis-
cussed below.

[0077] b) ranking of the context-processed search results
using ranking parameters specified in the context file. The
context file can include ranking parameters, such as weight-
ing factors to increase or decreases the IR scores for par-
ticular types of documents, for documents from selected
sources. The ranking function may also operate on identi-
fiable native or labeled metadata. For example, the rankings
can be adjusted based on length of document, publication
date, or document format just to name a few. Alternatively,
the ranking may be adjusted based on labeled metadata, such
ranking by expressed “rank” value, or by as increasing the
native ranking of documents labeled as “expert” by a weight
factor, or increasing the ranking of documents having some
specified quality measure of “10”. The context processor
408 can use these ranking parameters to rank the documents
in the search results.

[0078] c) clustering of the search results using clustering
parameters. The context processor 408 may also cluster
(group) the search results according to parameters provided
in the context file. The parameters can specific clustering
based on native or labeled metadata. Thus, all documents
labeled as “professional reviews” can be clustered together;
or all documents where are image files can be clustered, or
documents from a given domain (e.g., all documents from
XXXX.Com).

[0079] d) providing navigational links in the context-
processed search results to additional contexts. As illustrated

Feb. 15, 2007

in FIGS. 2 and 3, the context processor may also provide
links that can be accessed to invoke additional searches for
further refinements of the information needs of the user.
Each such related context link invokes another cycle of
pre-processing and/or post-processing by the context pro-
cessor 408 and if so instructed, another cycle of query
processing by the PSE 404.

[0080] e) annotating the context-processed search results
using annotations specified in the identified context. As
illustrated in FIGS. 2 and 3, the context file may also provide
specific annotations 210 that can be included with any of the
search results.

[0081] In one embodiment, the system of the present
invention does not change the order in which the initial
results are presented, but annotates the results with the labels
that apply to them. Clicking on a label issues a new search
restricted to the results matching this tag. In yet another
embodiment, these annotations need not be labels but can be
links to relevant pages on other sites.

[0082] Thus, the context files can include conditional
instructions that define various types of Annotations. These
annotations are provided by the annotate command. In one
embodiment, this command has the following syntax:

PTEE

<Annotate count="n">
annotation condition*
annotation action*

</Annotation>

[0083] The annotation condition operates in a similar
manner to a restriction condition. Here, the annotation
condition is evaluated with respect to the attributes (tags), if
any, associated with the search results, as compared to the
entries in the site/page annotation file. Any attribute (or set
of attributes) can be used as annotation conditions, such as
the type, source, year, location, or the like, of a document or
page. The context processor receives the search results from
the search engine, and compares each result (be it a site,
page, media page, document, etc.) with the entries listed in
the site/page annotation file 900. Results that satisfy the
condition are annotated with the annotation action. Annotate
commands can be used by themselves or in combination
with any of the other commands, including Restrictions.

[0084] In one embodiment, the context file is left implicit
and only consists of Annotation commands, where each
result that is assigned a tag/label/annotation by the annota-
tion files is annotated with that label/annotation. Further, the
user may be ‘subscribed’ to a number of annotation files or
‘feeds’, all of which are applied to the user’s search results.
In yet another embodiment, the user can also indicate that he
would like the feeds used by another user to also be applied
to him.

[0085] In yet another embodiment, the query does not
originate at the vertical content site, but at a general search
engine site. The system of the present invention provides a
mechanism by which the knowledge provided by the vertical
content site is applied even for searches entered at a general
site such as google.com. In one embodiment, the user
indicates to the search engine, either while using the VSE or
through a sign up process similar to that used to subscribe to

US 2007/0038601 Al

RSS feeds, that he or she would like to apply the VSE’s
contexts which conducting searches of a particular type. In
another embodiment, selection and use of a particular VSE
is performed automatically.

[0086] The context processor 408 then provides the con-
text-processed search results to the client device 402. As
noted, the user can access any of the related context links, or
perform entirely new queries, again making use of any
context files that are selected based on such queries.

[0087] The client device 402 may also query the PSE 404
directly, either through its search engine interface 409, or
simply by going to the website of the PSE 404 entering the
query directly there. In this scenario, context processing is
still handled by the context processor 408 in manner
described above.

[0088] In one embodiment, the context aggregator 1101
aggregates search results. Multiple queries to PSE 404 may
be generated, yielding multiple sets of results. The context
aggregator 1101 combines these sets of results, removing
duplication and sorting/ranking remaining results intelli-
gently, so as to present the complete results of all queries in
a unified, integrated manner. If post-processing includes
annotation, the context aggregator 1101 ensures that anno-
tations for all relevant contexts are presented in a uniform
manner, without duplication.

[0089] Thus, the context aggregator 1101 can perform
aggregation at the pre-processing stage (by aggregating
contexts for queries to be performed) and/or at the post-
processing stage (by aggregating results after queries have
been performed).

[0090] Referring now to FIG. 5, there is a shown a system
architecture in which the context processing operations are
provided by the PSE system itself. Again, there is a client
device 502 as before, including a browser 503, along with a
host vertical content site 504, and a PSE system 500. The
vertical host vertical content site 504 includes a vertical
content server 506 (e.g., a web and/or application server)
and vertical content files 505 (e.g., a database or directory of
web pages). Also present are vertical context files 507. The
vertical content site 504 also includes a search engine
interface 509 to the PSE system 500, such as a search field
and search button as illustrated in FIG. 1. The user accesses
the vertical content site 504. From that site, he or she enters
a search query to be processed by the PSE system 500. The
vertical content server 506 processes the search query to
determine a number of context IDs for appropriate context
files, and transmits the search query and context IDs to the
PSE system 500. For example, the context IDs can be
transmitted as parameters in one or more URLs to the PSE
system 500. The vertical content site 504 also includes a
number of conventional components (e.g. firewalls, router,
load balancers, etc.) not shown here in order to not obscure
the relevant details of the embodiment.

[0091] The PSE system 500 includes a number of com-
ponents. A front end server 510 provides the basic interface
for receiving search queries. The front end server 510
extracts the context IDs and query, and passes them to a
context processor 520. The front end server 552 may also
provide an identifier of the client device or the user to the
context processor 520. The context processor 520 provides
the context IDs and query, to the context server 530. The

Feb. 15, 2007

context server 530 uses the context IDs to retrieve context
files from a repository of cached context files 540. The
context files are received from any vertical content site 504,
via a registration interface 560. This allows any provider of
a vertical content site 504 to define the context files that are
to be used for handling queries from their site and upload
such context files for storage by the PSE system 500.
Alternatively, the context files are extracted from the vertical
content sites 504 by a context file web crawler 580. The
registration and crawling methods may be used together.
One implementation would be for the vertical content site
504 to first register its context files 507, which includes
putting the site address on a crawl list. Subsequently, the
crawler 580 crawls the site 504 to obtain any updates to the
context files 507. Caching of the context files ensures very
high speed processing of the context files at query time,
since context processor 520 does not need to retrieve the
context files from the remotely vertical content site 504, and
thereby does not incur network latency (or problems with
the vertical content site being unavailable).

[0092] The context server 530 may also obtain context
files from a repository of global context files 542. These
context files can be derived from data mining on the cached
context files 540, provided by the provider of the PSE
system 500, or any combination thereof. Such context data
can include any information that is deemed relevant and
persistent with respect to the user and/or client 502.

[0093] The context aggregator 1101 combines the con-
texts. The context server 530 then provides the aggregated
context file to the context processor 520. The context
processor 520 performs the appropriate pre-processing
operations (if any) as defined in the context file to generate
the reformulated query, and establish the search engine
control data as set forth above, as part of the context-
processed query. The search engine 550 receives the con-
text-processed query, including reformulated query and
search engine control data, and executes a search on same to
provide a set of context-processed search query results.
These results are passed back to the context processor 520,
which performs the post-processing operations on the search
results as defined in the context file, to further modify the
context-processed search results. If appropriate, the context
aggregator 1101 aggregates search results. These context-
processed results are then transmitted back to the client
device 502.

[0094] This architecture provides various benefits. First, it
provides for high-speed access to the context files and
eliminates reliance on the availability of the remote vertical
content sites to serve their context files on demand.

[0095] Second, collection and aggregation of the context
files allows for various systemic benefits to be achieved
from analysis of the context files.

[0096] Specifically, the following types of information
may be aggregated from the collected context files. The rules
used to define the query pre-processing operations can be
accumulated and used to identify the most frequently used
rules for various query terms. To a large extent this type of
information is more reliable, having been essentiality voted
on by a large population of interested providers, as opposed
to rules designed by a very small team of editors.

[0097] Similarly, analysis of the search engine control
yields identification of most frequently used search engines,

US 2007/0038601 Al

indices, and parameters for particular queries or types of
queries. Analysis of the query post-processing operations
also identifies the most frequently used annotations, related
contexts, ranking and filtering operations.

[0098] As mentioned above the context files includes label
metadata used by the vertical content providers to describe
the characteristics of any site or page on the Internet. In one
embodiment, these labels are selected from a publicly pro-
vided ontology, so that vertical content providers use the
same set of labels to characterize the content of the Internet.
The ontology of labels can describe categories and instances
of any type. The ontology includes, for example, topics,
information types, information sources, user types, and
rating scales, just to name a few possible aspects of the
ontology. Accordingly, from the cached context files 540 a
categorization of Internet content can be derived and vali-
dated. By way of simple example, all Internet sites labeled
as type “buying guide” and category “digital camera” can be
extracted from the cached context files 540. A directory of
these digital camera buying guides can then be constructed,
for example by selecting those sites having that have a
minimum number of appearances in the context files. This
approach again leverages the collective judgment of the
vertical content providers—that is, the wisdom of crowds—
as to the nature, type, and quality of content on the Internet.

[0099] From the foregoing, the PSE system 504 can
extract and establish a collection of globally optimized
context files, where the query pre-processing rules, search
engine control data, and query post-processing rules are
derived from statistically analysis of cached context files for
the frequency, distribution, variability and other measures of
the usage of context information.

[0100] One scenario for this architecture is to support
direct search queries with post-query context processing. In
this embodiment, a user query is received directly from the
client device 502, without first being passed through a
vertical content provider site 504. The user’s search query
can be received directly at the website of the PSE system
500 (e.g., via search query page), or a search interface in
browser toolbar, application, or system extension (e.g., a
search interface on the user’s desktop). In any event, the
user’s search query is handled without context based pre-
processing (that is, query modification based on a vertical
content provider’s context files), though internal adjustment
of the search query may be performed as part of native
search operations. The search results are then post-processed
with one or more context files, to provide the various types
of navigational links, related context links, and/or annota-
tions on search results as described and illustrated in FIGS.
2 and 3.

[0101] Another beneficial aspect of this architecture is that
analysis of the context files also allows for integration of
advertisement purchases based on contexts. That is, adver-
tisers can bid for placement of their advertisements in
specific contexts, rather than by specific query terms. For
example, an advertiser may bid for placement of an adver-
tisement for its digital camera when the context file for a
query indicates that the user is shopping for a particular
camera model, but not when the user is seeking technical
support. This allows advertisers to more precisely focus their
advertising efforts based on the user’s information needs—
which have been expressly described by the context files,
rather than merely inferred from the query terms.

Feb. 15, 2007

[0102] Referring now to FIG. 6, there is shown an embodi-
ment of a system architecture in which the context process-
ing is provided by the vertical content site itself. In this
embodiment again there is a client device 602 including a
browser 603, along with a host vertical content site 604, and
a general search engine system 600. The vertical content site
604 includes a vertical content server 606 and vertical
content files 605 (e.g., a database or directory of web pages).
The vertical content site 606 also includes a search engine
interface 609 to the search engine system 600, such as a
search field and search button as illustrated in FIG. 1. The
user accesses the vertical content site 604 and from that site
can enter a search query to be processed by the search engine
system 600.

[0103] In this embodiment, the vertical content site 604
also includes various components for context processing,
including a vertical context processor 620 and local vertical
context files 607. As before, vertical content server 606
receives a search query from the client device 602, e.g., via
the browser 603, and processes the search query to deter-
mine context IDs for an appropriate context file. This
information is now provided to the vertical context proces-
sor 620. The context processor 620 passes the context IDs
(and optionally the client device 1D, user ID, and query) to
the context server 630. The context server 630 uses the
context IDs to retrieve context files from the vertical context
files 607.

[0104] The context server 630 provides the retrieved con-
text file(s) to the context processor 620. The context pro-
cessor 620 performs the appropriate pre-processing opera-
tions as defined in the context file to generate the context-
processed search query (including the search engine control
data as set forth above). The vertical context processor 620
then invokes the search engine 650 to process the context-
processed query.

[0105] The search engine 650 receives the reformulated
query and search engine control data, and executes the
search accordingly, generating the context-processed search
results. These results are passed back to the context proces-
sor 620, which performs the post-processing operations on
the search results as defined in the context file, to further
modify the context-processed search results. These pro-
cessed results are then transmitted back to the client device
602.

[0106] The context processor 620 may also provide some
or all of the search engine control data to the search engine,
depending whether the search engine 650 exposes an appli-
cation programming interface. In some embodiment, where
the search engine 650 is closed, then the context processor
620 simply passes the queries to the search engine 650 and
operates on the results. In this embodiment, the context
processor 620 itself would use at least some of the search
engine control data, for example, selection of which search
engine to use. This gives the vertical content site provider
control as to which search engines 650 to use with which
types of user queries.

[0107] Referring now to FIG. 7, there is shown an embodi-
ment of a system architecture in which the context process-
ing is provided by the client device site. In this embodiment
again there is a client device 702 including a browser 703,
along with a host vertical content site 704, and a general
search engine system 700.

US 2007/0038601 Al

[0108] As before, the vertical host vertical content site 704
includes a vertical content server 706 and vertical content
files 705 (e.g., a database or directory of web pages). The
vertical content site 706 also includes a search engine
interface 709 to the search engine system 700, such as a
search field and search button as illustrated in FIG. 1. The
user accesses the vertical content site 704 using the browser
703 and from that site can enter a search query to be
processed by the search engine system 700.

[0109] In this embodiment, the client device 702 includes
the various components for context processing. First, the
client device 702 includes a browser 703, for accessing the
vertical content site 704 as well as any other available site
on the network. The client 702 includes a vertical context
processor 720, which can operate a plug-in to the browser
703, or Java applet. Once the user makes the query via the
vertical content server 706, that query is also provided to the
vertical context processor 720. The context processor 720
again processes the search query to determine context IDs
for appropriate context files. Since the operation is local to
the browser, the context processor 720 can use the context
IDs to retrieve context files from the user context files 707.

[0110] The context aggregator 1101 combines the received
context files to generate an aggregated context, using tech-
niques described herein. The context processor 720 then
performs the appropriate pre-processing operations as
defined in the context file to generate the context-processed
query. The vertical context processor 720 then invokes the
search engine 750 to process the context processes query.
The search engine 750 receives the context-processed query,
and retrieves search results, forming the context-processed
results. If appropriate, the context aggregator 1101 combines
search results in an intelligent manner so as to provide a
unified result set. These results are passed back to the
context processor 720, which performs the post-processing
operations on the search results as defined in the context file,
to further modify the context-processed search results.
These results are then passed back to the browser 702.

[0111] An advantage of this architecture is that it allows
the user to establish and user their own context files. Just as
individual vertical content providers have their individual
expertise and viewpoint, so to do individual users. Thus, a
user may define context files to categorize and label par-
ticular websites, for example, identifying the site that she
considers most authoritative or useful for particular topics.
The user can also define query pre-processing operations, or
more likely import such operations from others (e.g., experts
in various topical domains) who publish context files for this
purpose. Similarly, the user can define post-processing
operations that allow for customization in the presentation of
results, including arrangement of results into clusters or
grouping that the user feels most comfortable with. For
example, a user can define a personal context file in which
search results are always clustered into academic (.edu),
government (.gov), retail shopping (sites having metadata or
text indicative of online purchasing), and image files.

[0112] The architectures illustrated in FIGS. 4-7 can all
operate concurrently with different types of the individual
systems operating together. FIG. 8 illustrates this system
architecture for mutual and concurrent context processing.
All of the system elements communicate via a network 890,
such as the Internet.

Feb. 15, 2007

[0113] First, the PSE system 800 includes a complete set
of components as described with respect to FIG. 4. The
operative features of these components have been previously
described and so are not repeated here.

[0114] Next, three types of client devices 802 are in
operation. Client device 802a simply has a browser 803 by
which it accesses various sites on the Internet. Client device
8025 includes a browser 803, as well as user context files
807, which can be passed to any available context processor
820 for processing in conjunction with a search query
provided by the user.

[0115] Client device 802¢ includes a browser 803 and user
context files 807, as well as its own context processor 820.
This enables the client 802¢ to perform local context pro-
cessing on the user’s search query prior to sending the query
to the search engine, and to perform post-processing opera-
tions after receiving the search results. This client’s browser
803 also includes a search engine interface 809, enabling
direct querying of the PSE system 800. Other clients 802a
and 8025 may also include search engine interfaces 809, for
example, in the toolbar of their respective browsers 803.

[0116] The three types of different vertical content sites
804 are also shown. Vertical content site 804a includes a
content server 806, along with a search engine interface 809
to the PSE system 800, as previously described. The server
forwards a user’s query (from any type of the client devices
802) to the PSE system 800, providing as well the context
1D associated with the user’s current context (along with any
context related information received from the client device).
The site does not need to store its own context files, as these
can be stored at the PSE system 800 in the cached context
file database 840.

[0117] For this type of vertical content site 804a, the PSE
system 800 provides all of the context processing opera-
tions. Here, the site 804a does not provide any specific
context ID information. As a result, the PSE system 800 can
provide its own context identification mechanisms, for
example based on the site 804qa, the client 802, the query
terms, or the like. Using the context information, the context
server 830 retrieves the appropriate global context files 842,
and the context processor 820 uses these files for the context
processing operations, including pre-processing of the
search query, control of the search engine operation and
parameters, and post-query processing. The programmable
search engine site 800 passes the context-processed search
results back to the requesting client, either directly, or within
the scope of the vertical content site 80454, e.g., using
framing techniques.

[0118] As with vertical content site 804a, vertical content
site 804¢ includes its own content server 806 search engine
interface 809, vertical content files 805, as well as local
vertical context files 807. This site 8045 receives a search
query from a client device 802, and forwards the query along
with the context ID for the query context to the PSE system
800. The site’s vertical context files 807 are cached in the
PSE system’s cached context files 840. The PSE system 800
receives the context ID, and uses its context server 830 to
retrieve the associated context files for site 8045 from the
cached context files 840. The context server 830 may also
retrieve any applicable global context file 842. The PSE
context processor 830 then processes the retrieved context
files, generates the context-processed search query and pro-

US 2007/0038601 Al

cesses the queries via the search engine 850. The context-
processed search results are then further post-processed by
the PSE context processor 820, again in accordance with
either the site’s context files or the global context files 842
(including where appropriate a combination thereof).

[0119] The last type of vertical content site 802¢ includes
its own content server 806 search engine interface 809,
vertical content files 805, local vertical context files 807, as
well as a local, vertical context processor 820. The local
context processor 820 receives the user’s search query, along
with the context ID for the user’s context, and using the
referenced context files performs the appropriate pre-pro-
cessing operations on the query prior to transmitting it to the
PSE system 800, along with the search engine control data
specified by the context files.

[0120] Here, the PSE system 100 can provide various
levels of services to the vertical content site 804c. Mini-
mally, the programmable search engine system 800 can
process the received context-processed queries, and execute
these queries accordingly via the search engine 850, pro-
viding the context-processed search results back to the local
context processor 820 for further modification. The local
context processor 820 for the vertical content site 804c
provides further post-processing operations specified by the
identified context, and then forwards the final set of context-
processed search results to the client device 802.

[0121] Alternatively, the PSE system 800 can perform
some specific context processing operations as instructed by
the local context server 820, whether pre-processing, or
post-processing, or control of the search engine operations.
For example, the local context processor 820 may perform
the pre-processing operations to reform the queries, but then
use the search engine control data to specify which docu-
ment collections and search algorithms the search engine
850 should use.

[0122] In addition, the PSE system 800 may add its own
layer of context processing based on its global context files
842, including generation of additional reformulated que-
ries, control of the search engine 850, and post-processing of
search results prior to returning them to the vertical content
site’s local context processor 820. The vertical content site
804c¢ can forward the context-processed search results to the
client device 802 directly, or can invoke another layer of
post-processing operations by the local context processor
820, perhaps to further fine tune the organization, comment-
ing, or navigation features thereof.

[0123] The PSE system 800 can provide context process-
ing directly to user queries input at the PSE site from any of
the client devices 802. The user’s search query can be
received directly at the website of the PSE system 800 (e.g.,
via search query page), or a search interface in browser
toolbar, application, or system extension (e.g., a search
interface on the user’s desktop). Since the user’s query is not
coming from a vertical content provider, the PSE system
800’s context processing can use the global context files
842, including those for annotating search results with links
to potentially useful context for the user.

[0124] The degree of context processing for direct queries
can be varied to include either pre-processing or post-
processing individually, or a combination of both. One
embodiment of direct query handling provides a context-

11

Feb. 15, 2007

based post-processing on the search results without context
based pre-processing (e.g., query modification). Here, the
user’s search is received and executed without pre-process-
ing based on the context files of a specific vertical content
provider (though some internal adjustment of the query and
selection of search indices may optionally be employed to
provide the most relevant search results). As described with
respect to FIG. 5, the search results are then post-processed
with one or more context files to provide the various types
of navigational links, related context links, and/or annota-
tions on search results as described and illustrated in FIGS.
2 and 3.

[0125] The post-processing operations in this scenario can
use either global context files 842, or can be based on the
context files of any number or selection of the vertical
content providers. In one embodiment, a user can identify
which the vertical content provider whose context files are
to be used for context processing. Identification can be done
via a subscription model, in which the user subscribes to
have such context processing done for her or her queries, for
example via a subscription interface (e.g., page) at the
website of the vertical content provider, which then forwards
an identifier of the user or the user’s client device to the PSE
800. A user may subscribe to a particular vertical content
provider in order to have that provider’s expertise, perspec-
tive or viewpoint applied to the user’s search queries and
results, without the user having to always enter a query from
that vertical content provider’s site.

[0126] For this embodiment, the PSE system 800 includes
a user account database 891, which stores for each user
various types of personal preferences for searches, including
the subscriptions to particular vertical content providers.
The PSE 800 also provides a registration interface (allowing
the user to register with the PSE system 800 for storing
search preferences, subscription information, and other user
settings), and a login interface for the user to login and have
the user’s settings applied to the user’s queries. Direct
queries received from the user and/or the user’s client device
802 are identified by the PSE 800 and then the appropriate
context files to which the user subscribed are used for
context processing. In another embodiment, subscription-
based context processing is provided for direct user queries
for both pre-processing and post-processing operations.

[0127] The selection of which vertical content provider’s
context files are to be used (whether for pre-processing,
post-processing or both) can be based on other factors
beyond a user’s subscriptions, as some users may not have
subscribed to any particular vertical content provider. In one
embodiment, the selection is based on a popularity measure
for each vertical content provider whose context files are
included in the cached repository. The popularity measure
can be based on web access statistics, like number of unique
visitors to a vertical content provider’s site each month (or
other time period), number of hits to such site, number of
current subscribers to the vertical content provider. These
and other statistical measures can be combined into a
popularity measure. Alternatively, or additionally, the selec-
tion can be based on a reputation measure (or rank), where
the reputation of each vertical content provider is judged and
rated by users.

[0128] Insummary, the foregoing provides a general over-
view of the operations and various system architectures

US 2007/0038601 Al

useful with the present invention. As can be seen, the present
invention can be practiced in a number of different and
complementary embodiments. The capability of the present
invention enable any system entity to provide context files,
context processing, or both, results in both tremendous
flexibility and power. The flexibility allows for rapid, wide-
spread and easy implementation of the present invention.
Any system entity can provide various levels of operative
support, and cooperate with any other system entity, accord-
ing to the techniques described herein.

[0129] The context files and context processing capability
can be readily implemented in any vertical content site and
in any client. The power of the system derives in part from
such widespread distribution and implementation: the more
context files and context processing is adopted, the more
contextual information can be accumulated and leveraged,
for example in the global context files. This enables the PSE
system to continually refine and adapt its capabilities to the
information needs of the wide variety of users. Further, the
widespread use of context files by vertical content develop-
ers continually expands the range of information needs and
perspectives that can be satisfied, as well as the depth and
quality of that information that is used to satisfy such needs.

[0130] As described above, a context aggregator 1101, or
any other system component, aggregates query results that
employ search intelligence derived from a plurality of
vertical search sites. Aggregation can include combining
search query enhancements, domains, and other pre-pro-
cessing search parameters. Aggregation can also include
post-processing, such as combining various sets of search
results. One skilled in the art will recognize that the present
invention can be implemented using pre-processing aggre-
gation, post-processing aggregation, or any combination
thereof.

[0131] Referring now to FIG. 10, there is shown a flow-
chart depicting a context aggregation method according to
one embodiment. The context aggregation method of the
present invention is not limited to any particular architec-
ture. The steps of the method depicted in FIG. 10 can be
performed by a context aggregator 1101 as shown in any of
FIGS. 4-7, or by any other component of a system for
practicing the present invention. In one embodiment, the
steps are performed by programmable search engine 404. In
another embodiment, different steps are performed by dif-
ferent components of the system.

[0132] Inaddition, one skilled in the art will recognize that
the particular method steps shown in FIG. 10 are merely
illustrative, and that variations can be performed, in which
some steps are omitted, changed, and/or added, without
departing from the essential characteristics of the present
invention.

[0133] A search query is received 1001, and a first context
1002 is identified for the query. One or more additional
contexts 1003 are also identified. Any number of vertical
search engines (VSEs) is identified for each of the identified
contexts, each VSE being associated with a vertical content
site.

[0134] In one embodiment, steps 1002 and 1003 are
performed by identifying particular characteristics of the
search query, the user performing the query, the client
machine, the observed behavior of the user, or the like, or

Feb. 15, 2007

any combination thereof. In one embodiment, for example,
each context represents an additional query term to be added
to the original query; in another embodiment, each context
represents a particular vertical search engine to be used for
processing the original query; in yet another embodiment,
each context represents a modifier or parameter to be applied
to the search.

[0135] For example, a standardized vocabulary of context
types, such as “owning”, “buying”, and the like, can be
established, so that similar context types can be identify by
virtue of their having consistent names. In one embodiment,
additional contexts are identified 1003 in a more sophisti-
cated manner. For example, suppose a user enters a search
query associated with vertical site A (either because the
query terms map to the subject matter serviced by site A, or
because the user entered the query at site A). Further
suppose that vertical site A tends to service the same type of
users as does vertical site B. (for example, both sites are
directed to providing guidance in purchasing digital cam-
eras). Thus, even though site B was not explicitly associated
with the entered query, the user would likely be interested in
results from site B as well. Accordingly, in such a situation,
a context corresponding to site B would be identified in step
1003.

[0136] One mechanism for identifying such additional
contexts 1003 is by observed correlation among visits to the
sites: if users who visit site A also visit site B, it can be
inferred that both sites tend to service the same types of
users. Another mechanism is to observe common or similar
result sets in other searches, possibly by statistical correla-
tion analysis of result sets. A third mechanism is by explicit
linking of contexts with one another: an administrator may
identify particular contexts as being related to other con-
texts. A fourth mechanism is by observation of similar
nomenclature: contexts that use the same or similar terms,
tags, and the like, are likely to be related to one another.

[0137] Once additional context(s) have been identified, the
identified contexts are aggregated 1004. The aggregated
context thus represents a set of enhancements and/or modi-
fications to the search query, based on the context of the
original search query as well as additional contexts identi-
fied in step 1003.

[0138] In one embodiment, context aggregation 1004 is
performed as follows. Where two or more VSEs have been
identified, each associated with a set of contexts, mappings
are identified between the contexts associated with the
VSEs. To identify corresponding contexts, the system of the
present invention uses a combination of the following
mechanisms:

[0139] 1)If both VSEs use the same vocabulary of context
names (such as a standardized nomenclature), the contexts
are mapped to one another by virtue of the consistent
terminology.

[0140] 2) If the vocabulary is inconsistent from one VSE
to another, the following approach is used for VSEs where
the contexts are arranged in a tree structure: The system of
the present invention first identifies “leaf” contexts in the
context tree and tries to map these. The system then com-
putes a similarity score between two leaf contexts based on
the overlap between the results produced by the two contexts
for either the query at hand or for a standard set of queries.

US 2007/0038601 Al

The mapping is then generated based on the results of the
similarity score. Contexts that don’t have a matching item
that is sufficiently similar can either be left out or incorpo-
rated as children of their original parents.

[0141] Once the mappings of contexts are identified, query
results using the contexts are merged to generate a single set
of results. Contexts can be merged either for a particular
query or in batch mode. Batch merging creates a new
merged context.

[0142] To merge a pair of contexts for a query, the query
is run using each context, and standard rank aggregation
techniques are used to effect the merge operation. The results
are assembled using ranking and sorting preferences, so that
results from one VSE may be interleaved with results from
another VSE.

[0143] To statically merge a pair of contexts, the system
merges the respective elements of the two contexts. For
example, a query reformulation from one context can be
merged using an OR operation with a query reformulation
from another context, to generate a merged context that,
when run, is effectively equivalent to the combination of the
two original contexts.

[0144] The query is pre-processed 1005 according to the
aggregated context. As described above, this pre-processing
can include any of revising, modifying and/or expanding the
query, designating one or more document collections on
which to conduct the search, selecting search algorithms for
evaluating the query, or any other type of operation that can
refine, improve, or otherwise enhance the quality of the
user’s search query, or any combination thereof. This
reformed query is then run 1006, and results are obtained.
The results are post-processed 1007 according to the aggre-
gated context. As described above, this post-processing can
include any of filtering, reranking, annotating, clustering,
and/or categorizing the search results, or any combination
thereof.

[0145] As described above, query processing according to
the present invention includes pre-processing, post-process-
ing, or any combination thereof. According to the method of
FIG. 10, therefore either step 1005 or step 1007 may be
optional.

[0146] The results are then provided 1008 to the user, for
example via a results page shown in a browser window.

[0147] The following is an example of context aggregation
according to one embodiment. Suppose there are two ver-
tical search engines devoted to digital cameras: V1 and V2.
Contexts have been developed and associated with each of
these VSEs, and each context has its associated annotation
files. In one embodiment, all of the contexts of a VSE use the
same set of annotation files. For illustrative purposes, sup-
pose V1 has the contexts C1, C2, . . . while V2 has the
contexts CA, CB, . . . For example, some of these contexts
(C1, CA) could correspond to choosing a camera, while
others (C2, CB) correspond to troubleshooting a camera.

[0148] According to an embodiment of the present inven-
tion, camera-choosing contexts from both VSEs are aggre-
gated so that the user need only enter one query, at one
location, to obtain results relevant to choosing a camera.
Similarly, camera-troubleshooting contexts from both VSEs
are aggregated; other contexts are similarly aggregated.

Feb. 15, 2007

[0149] In order to accomplish such aggregation, each V1
context C, C2, . . . is mapped to a corresponding V2 context
CA, CB, . . . If standard or recommended names (such as
“choose”, “troubleshoot”, or the like) are used at each VSE,
the determination of correspondence is performed according
to the standard names. Alternatively, if no standard name is
available, a standard set of queries is performed at each
VSE, and the results are mapped according to an appropriate
distance metric; the assumption is that corresponding con-
texts will yield greater similarity of results than non-corre-
sponding contexts. The context mapping need not be one-
to-one.

[0150] Once the mapping has been performed, the corre-
sponding contexts are merged. For example, if C1 maps to
CA, query processing operations (both pre- and post-pro-
cessing) for C1 and CA are merged with one another to yield
a unified set of results. Restrictions, redirections, query
reformulations, and the like, are all merged, as follows.

[0151] 1) Query Reformulation: This operation is merged
by computing the query reformulations from both contexts,
remove duplicates, and use the resulting set.

[0152] 1ii) Redirections: This operation is merged by com-
puting the redirects from both contexts.

[0153] iii) Restrictions: This operation is merged by com-
puting the results passing through each restriction from each
of the two contexts. When a restriction R1 from C1 and RA
from CA have the same result items satisfying them, one
restriction R1 or RA is used. If different result items satisfy
the restrictions, all the restrictions from each of the contexts
are used, together with their annotations, and the like.

[0154] In one embodiment, where the user entered the
search query at a general search site (such as google.com),
the method of the present invention can yield general results,
results from one or more vertical search engines, or any
combination thereof. Thus, searches entered at general sites
can yield results that are informed by vertical content sites.
Based on characteristics of the query (such as query terms)
and/or other factors surrounding the query and the user, the
system of the present invention automatically determines
how to redirect and/or process a search query. Thus, the
invention is able to provide improved search results that
make use of context intelligence, even when the query is
entered at a general search site. In this manner, the present
invention integrates access to high-quality vertical search
engines (and their results) into an interface for a general
search engine, so as to improve the search experience even
for those users who have not yet used (and may not even be
aware of) these vertical search engines. In addition, aggre-
gation allows these search results to make use of context
intelligence from a plurality of sources.

[0155] In another embodiment, where the user entered the
search query at a vertical search site, it may or may not be
desirable to include results from the search engine for that
vertical site as well as other vertical search engines; in
particular, some vertical search site operators may not want
search results from their search engines to be combined with
search results from other, competing search engines.
Accordingly, an option as to whether or not to include these
results from other sites may be available to the search site
operator and/or to the user him- or herself.

[0156] Referring now to FIG. 11, there is shown an
example of a set of context files as might be developed by

US 2007/0038601 Al

a vertical content provider for a digital camera related
website. This simplified example is used only to illustrate
some of the basic aspects of context files, and not as
definitive statement of their characteristics.

[0157] In this example, the vertical content provider has
provided a variety of context files that suit different types of
information needs, and different types of available
resources. Context files 902 are illustrative of contexts
defined for various types of users of digital cameras, such as
a professional user searching for a digital camera, a con-
sumer searching for a digital camera, and an owner who
already has such a camera. Each of these types of users has
different information needs and typically different
approaches to evaluating the information she obtains. For
example, a professional user is typically most concerned
with technical performance issues such as picture quality,
durability, and compatibility with an existing set of profes-
sional equipment, whereas a consumer user is typically
concerned with ease of use, convenience and price. Both of
these types of users are seeking information during their
purchase process that is quite different from an existing
owner. An owner is not typically interested in obtaining
further opinions or evaluations of a product, but rather
information pertaining to its use, technical support, service,
or warranty issues.

[0158] Each of these three user type context files 902
contain instructions that enable a context processor to
respond to a specific query according to the expected
information needs of the user. Thus, the context file 9024 for
the professional user may include query revision rules to
modify a received query such as “Nikon camera” to “Nikon
DX2”, which is a current model of a professional digital
SLR, and one deemed by the content provider to be of most
interest to the professional user. By contrast, the context file
902¢ for the consumer user may include query revision rules
to modify this same query to “Nikon Coolpix 76007, again
a current model of the Nikon cameras, and determined by
the content provider to be the best Nikon camera for a
typical consumer user. Continuing this example then, the
vertical content site would pass the consumer context file
902¢ to a context processor along with the user query of
“Nikon camera”, and the context processor would use the
query modification rules to generate the appropriate revised
query for execution.

[0159] The arrangement and interrelationship of the con-
text files is highly flexible and is decided by the particular
vertical content provider. Each of the context files 902 can
point to any number of other context files 902 in an arbitrary
graph manner, as best determined by the content provider.
For example, the consumer user context file 902¢ references
two other context files, the “Looking for a Camera” context
files 902/, and the “Shopping for a Camera™ context file
902:. These context files more precisely focus on serving the
user’s intention, the former focusing on the information
needs when a user is still looking for a camera and in need
of information to evaluate potential products. The latter
context is appropriate when a particular camera has been
selected and the user is now shopping for the camera based
on price, availability, and other factors. Again, each of these
context files 902 references different and more selective
contexts. Thus, the “Looking for a Camera” context file
902/ references a group of context files 9024 pertaining to
various types of reviews of digital cameras. The “Shopping

Feb. 15, 2007

for a Camera” context file 902; references context files
902m, 9021 for comparing prices, and for comparing ven-
dors. The context files 902 can also be arranged hierarchi-
cally through a series of directories.

[0160] As previously discussed, a context file may include
query revision rules, and search engine control information
that enables the context processor to programmatically tailor
the user’s query to the information needed, as indicated by
the context. For example, once the user enters the “L.ooking
for a Camera” context, that context file 902/ may contain
search control data that selects specific websites that contain
consumer oriented camera reviews, as deemed appropriate
by the vertical content provider. This control data would thus
be used by the search engine system to select one or more
document collections for targeting the query (or revised
queries) thereto.

[0161] Similarly, the “Shopping for a Camera” context file
902/ would include search control data that selects various
price comparison engines to obtain current market prices on
a given camera. These examples illustrate how selection of
a context can programmatically vary the search query and
search control data and parameters in order to better suit the
user’s information needs.

[0162] It is important to further point out here that the
specific editorial decisions reflected in each context file
902—how to revise a query based on whether the user is a
professional or a consumer, or which sites to search depend-
ing on whether the context is shopping or looking—are
made by each vertical content provider individually. This
gives each vertical content provider—such as those with
expertise in a particular field, such as digital cameras—the
ability to define the contexts as they see fit, thereby using
their own judgment, expertise, knowledge, and opinions to
make the various determinations. Each vertical content
provider can define very detailed and precisely crafted
contexts, each of which can specifically control the opera-
tions of the programmable search engine in responding to a
search query. Users ultimately benefit from this individuated
capability because the vertical content providers to create a
dynamic information “market”: a market not merely for
content itself, but for perspective, experience, and knowl-
edge. That is, vertical content providers now offer users the
ability to “search the world” through their own point of
view, as suggested in FIG. 1 by the text “Search the web with
digitalslr.org.”

[0163] One mechanism for encapsulating the expertise
and judgment of each vertical content provider is, at least in
part, the site/page annotation file 900. This context file 900
includes information variously categorizing or describing
characteristics of sites or pages on the Internet. In addition
to annotating a site or a page, a developer can also annotate
all the pages that share a certain URL prefix, whether or not
there is an actual page with that prefix. Each entry in the
site/page annotation file 900 provides an identifier of a site
or page, e.g., a URL, along with a number of tags or token
identifying attributes, characteristics, weightings, or other
qualitative or quantitative values. The tags can be explicitly
typed (e.g., as <tag, value> pairs), or implicitly typed based
on order and data format. A URL can specify a site or page
completely, or in part as a URL prefix, for some portion of
a web site. Such an annotation file can be provided using
existing standard formats such as RSS (RDF Site Summary
or Really Simple Syndication).

US 2007/0038601 Al

[0164] The following are some examples of the contents
of a site/page annotation file. These examples might be
provided, for example, via an RSS feed or by some other
mechanism.

[0165] wrl, http://www.dealtime.com/xPR-Ni-
kon_D100-RD81887137412, descriptor, Review/
NegativeReview, rank, 6, comment, Professional Pho-
tographer lists various shortcoming and compatibility
problems

[0166] wrl, http://www.dealtime.com/xPR-Ni-
kon_D100-RD81887137412, descriptor, Review/Pro-
fessionalPhotographerReview, rank, 0, comment, Pro-
fessional Photographer is less thrilled than many others
about the D100

[0167] wurl, http://www.dpreview.com/reviews/read_op-
inion_text .asp?prodkey=nikon_d100&opinion=
15851, descriptor, Action, rank, 0, comment, Short
review on using the D100 for sports photography

[0168] wrl, http://nikonimaging.com/global/news/,
descriptor, News, rank, 3, comment, Nikon’s web site.
Lots of info, but hard to navigate

[0169] url, http://www kenrockwell.com/tech/2dig.htm,
descriptor, Guide, rank, 0, comment, Explains Digital
SLRs vs Point and Shoots

[0170] wrl, http://www.luminouslandscape.com/tutori-
als/nikon-sn.shtml, descriptor, Review/Professional-
PhotographerReview, rank, 8, comment, Extremely
detailed, very technical, comparative review

[0171] wrl, http://www.photographyreview.com/,
descriptor, Review, rank, 6, comment, Good all around
site for photography buffs

[0172] wurl, gallery.photographyreview.com/showphoto,
descriptor, Photos, rank, 8, comment, Good showcase
of great photography with a wide range of cameras

[0173] wurl, http://www.olympusamerica.com/, descrip-
tor, Manufacturer, rank, 10, comment, Olympus’s web
site. Well organized and informative

[0174] In this embodiment of a site/page annotation file
900, each entry is a set of <name, value> pairs, as follows:

[0175] URL: provides the network address for where the
site or page is located. Note that both specific pages within
sites can be identified, as well as home pages for large sites.

[0176] Descriptor: a semantic label describing the site or
page. The content provider is free to use any labels he or she
chooses, since the query processing and post-processing
operations are written in terms of rules that can operate on
these same descriptors. In the above example, the vertical
content provider has labeled various sites/pages to their
content type (e.g. “Negative review” or “News” or “Pho-
tos”), as well as to the type of entity which provides the
information (e.g., “Manufacturer”). Again, these descriptors
are merely illustrative, and the selection of which particular
descriptors are used to describe a site will be dependent in
at least in part on the particular category or topic for the
subject matter of the domain.

[0177] Referring back then first entry here is for a spe-
cifically identified page on a remote site (dealtime.com) that
contains a “negative review” of the Nikon D100 camera.

Feb. 15, 2007

[0178] The pre-processing and post-processing operations
can use the tags as conditions for evaluation. For example,
a post-processing rule in the “Negative Reviews” context
file 902» would select for inclusion in the search results that
had a tag “Negative Review/NegativeReview”. The various
tags shown above—Manufacturer, Guide, Photos, etc.—are
merely illustrative of the scope and variety that can be used.
The ability to tag any site or page with a semantic label
allows for very powerful pre-processing and post-processing
operations by the context processor.

[0179] In one embodiment, there is provided a common
ontology of tags which can be used, either exclusively or in
conjunction with a set of private tags defined by vertical
content provider. The ontology includes a hierarchy of
categories of information and content on Internet. One
useful ontology is provided by the Open Directory Project,
found at dmoz.org. All or a portion of such an ontology can
be used for the tags. The ontology can be public, as in the
OPD, or proprietary, or a combination of both.

[0180] Rank: Each entry can have a rank (or “score”,
“weight”, etc.) a figure of merit as to the importance, quality,
accuracy, usefulness, and the like of the particular page or
site. This value is provided by the vertical content provider,
again based on his or her own judgment and perspective. The
rank value further allows the context processor to selectively
include (or exclude) search results that have certain rank
values, or to rank individual search results by this value as
well.

[0181] Comment: Each entry can have a comment, expla-
nation or description that the vertical content provider can
use to further describe the page to the user. The comment
allows the vertical content provider to further articulate the
relationship between the page and the user’s information
need.

[0182] A given site or page can have multiple entries in the
site/page annotation file 900, each with its own descriptors,
and other tags. For example, the first two entries above are
for the same page, but with different descriptors, ranks,
comments and so forth. When more than one entry matches
a given URL, depending on the use, either both or the most
specific entry is applied.

[0183] The URL, Descriptor, Rank, and Comment fields
are illustrative of the types of information that can be
included in the site/page annotation file 900. The vertical
content provider can define any number of other or addi-
tional attributes, and then define complementary pre-pro-
cessing and post-processing rules that operate on such
attributes. For example, other attributes that can be included
in the site/page annotation file include:

[0184] Content Type: a designation of the type of site or
page, such as guide, scientific article, government report,
white paper, thesis, blog, and so forth.

[0185] Source Type: a designation of the source of the
document, which maybe the same or different than the Tag.
For example: government, commercial, non-profit, educa-
tional, personal, and so forth. An “Organization” attribute
may serve a similar purpose.

[0186] Location: a designation of the country, state, coun-
try or other geographic region relevant to the page, using
names, standard abbreviations, postal codes, geo-codes, or
the like.

US 2007/0038601 Al

[0187] User Type: a designation of the intended type of
user or audience for the site or page. For example, lay
person, expert, homemaker, student, singles, married, eld-
erly, and so forth.

[0188] The foregoing descriptors are themselves instances
or specializations of a generic attribute type “tag”. Accord-
ingly, vertical content providers can choose to simply use the
“tag” designation in association with a property value (e.g.,
tag, “Manufacturer”), or may use some specialization of tag,
such as those listed above, or a combination of both
approaches. This feature further enhances the flexibility and
the extensibility of the present invention.

[0189] Any given page or site can have multiple different
entries in the site/page annotation file. For example, the first
two entries in the above list are for the same page, but have
different tags, the first being a Negative Review, and the
second being a Professional Photographer Review, different
ranks, and different comments. This allows the vertical
content provider to express the relevance of a give site for
a particular context, rather than being limited to a single
inclusion.

[0190] A second mechanism for capturing the knowledge
and expertise of the vertical content provider is the knowl-
edge base file 904. The knowledge base file 904 is used to
describe specific knowledge of concepts, facts, events, per-
sons, and like. This information is encoded in a graph of
object classes and instances thereof. A simple knowledge
base file 904 could be as follows:

<KB>

<Class id="CameraModel"/>

<Class id="DigitalSLRCamera">

<subClassOf ref="CameraModel'/>

</Class>

<DigitalSLRCamera id="NikonD100">
<manufacturedIn ref="Japan”/>
<name>D100</name>
<name>Nikon D100</name>
<manufacturer>Nikon</manufacturer>
<brand>Nikon</brand>
<format>SLR </format>
<madein>Japan</madein>
<modelyear>2003 </modelyear>
<megaPixels>6mp</megaPixels>

</Digital SLR Camera>

<DigitalSLRCamera id="CanonDigitalRebel">
<manufacturedIn ref="Japan”/>
<name>EOS300D</name>
<name>Digital Rebel</name>
<manufacturer>Canon</manufacturer>
<brand>Canon</brand>
<format>SLR </format>
<madein>Japan</madein>
<modelyear>2003 </modelyear>
<megaPixels>6.5mp</megaPixels>

</Digital SLR Camera>

</KB>

[0191] This knowledge base defines the class of “Cam-
eraModel”, used to identify individual types of cameras.
Each a each class had a class id, as shown. A class can then
be a subclass of another class. Hence, the class “DigitalSL-
RCamera” is a subclass of the “CameraModel” class.

[0192] Instances of a class can then be defined as well.
Here, two different instances of the class “DigitalSLRCam-

Feb. 15, 2007

era” are defined by giving it a specific id, here “NikonD100”
and “CanonDigitalRebel”, and a listing of a variety of
properties, such as their name, manufacturer, location of
manufacture, model year, and so forth. The properties for
each class are determined by the provider of the knowledge
base file 904, such as the vertical content provider.

[0193] The programmable search engine may maintain its
own global knowledge base file as part of its global context
files. This global knowledge base can provide an extensive
database encapsulating a vast array of knowledge, concepts,
facts, and so forth, as extracted from content on the Internet,
provided by experts or editors, or any taken from existing
databases. Vertical content providers can then make use of
this global knowledge base by providing pre-processing and
post-processing operations that make use of such knowledge
base information, as further described below.

[0194] The context files 902 use a script or markup
language to define the various pre-processing, search engine
control, and post-processing operations. The various ele-
ments of the language are as follows:

Object Evaluation

[0195] The knowledge base file 904 can be used to evalu-
ate whether particular objects have defined properties or
attributes. In general, there are three basic types of objects
that can be evaluated related to the knowledge base: queries,
users, and search results. The form of the evaluation com-
mands are generally the same.

[0196] The query evaluation commands for evaluating
terms using the knowledge base file 904 are as follows:

<query.denot.property>property_value</query.denot.property>
<query.denot.InstanceOf>class__id</query.denot.InstanceOf>
<query>query__term</query>

[0197] The first type of term based evaluation is used to
evaluate whether the concept expressed by one or more
query terms matches some object in the knowledge base file
that has the specified property with the specified property
value. The context processor processes this command by
traversing the knowledge base file 904 (as a graph, for
example) until it finds an object having a property with the
matching property value. For example, assume the knowl-
edge base file 904 portion described above, and the query
evaluation command:

[0198] <query.denot.Manufacturer>Nikon</query.de-
not.Manufacturer>

[0199] and the input search query “D100”.

[0200] Here, the query term “D100” matches the name of
a camera instance in the knowledge base file 904. The
context processor than checks whether the Manufacturer
property of that instance is “Nikon”. Since it is, the query
“D100” is said to denote a camera manufactured by Nikon,
even if that is not specifically disclosed in the query term
itself. Accordingly the query evaluation command is satis-
fied, and the context processor would then take an appro-
priate action that was dependent on this evaluation. As will
be further illustrated below, a variety of different commands

US 2007/0038601 Al
17

to the context processor can be made conditional based on
the evaluation of the query evaluation command.

[0201] The second type of query evaluation command is
query.denot.Instanceof. This command is evaluated to deter-
mine whether a particular query indicates that an instance of
a class has been described in the query, rather than property.
For example, consider the query evaluation command:

[0202] <query.denot.InstanceOf>DigitalSLRCamera</
query.denot>

[0203] where the user query is “8mp SLR”.

[0204] Here, the query is decomposed into terms “8mp”
and “SLR”, and these are checked against the property
values for the objects in the knowledge base file. In this
example, these properties match the properties for the Nikon
D100 camera, satisfying the query evaluation command.
Again, the context processor would undertake whatever
command was conditioned on the evaluation command.

[0205] The last type of query evaluation command
<query>query_term</query> is the simplest. The query
evaluation command is satisfied if an input search query
term matches the query_term.

[0206] As noted above, the context files may used with
any combination of query evaluation commands as condi-
tional triggers for further context processing. Example of
these will be further described below.

[0207] As with the evaluation of queries, so too can users
and search results be evaluated for their properties, with
respect to defined any defined class in the knowledge base
file. Thus, the attributes of user can be evaluated with the
following command

[0208] <user.property>property_value</user.property>

[0209] where property refers to any available property of
the user, such as user name, login, account number, location,
1P address, site activity and history (e.g., clicks, focus, page
dwell time) and so forth. Some of these properties can be
locally available from the knowledge base file 904. Alter-
natively, the property information can be extracted (e.g.,
queried) from any accessible legacy database (e.g., a cus-
tomer database, account database, registration database, or
other data source), which exports an appropriate program-
matic interface. Other properties, such as site activity, are
made available from site tracking tools that monitor each
user’s activity at the vertical content site.

[0210] Users can also be evaluated for membership in
classes, using the following:

[0211] <user.InstanceOf>class_id</user.instanceOf>

[0212] Here, a class of users (e.g., “Professional”) can be
defined in the knowledge base file 904, and the properties of
the current user compared by the context processor against
the properties of an identified class for match in values. If a
property match is found, the user is deemed a member of the
class.

[0213] Similarly, any search result can be evaluated as
well, as to its properties, as defined in either the source/page
annotation file 900 (or alternatively, in its metatags). Here,
the evaluation command would take the form:

Feb. 15, 2007

<result.tag>tag value</result.tag>
<result.tag.InstanceOf>class__id</result.tag. InstanceOf>

[0214] As a default <result.tag> may be abbreviated to
<tag>.

[0215] In the first command, a given search result (or set
thereof) can be evaluated with respect to its properties, such
as content type, date, source, user type, etc. This outcome of
the evaluation can be used to control further context pro-
cessing. Similarly, search results can be evaluated using the
second command syntax to determine if they are instances of
various classes defined in the knowledge base file 904.

[0216] These following context processing operations can
be executed unconditionally, or conditionally based on any
of the foregoing types of evaluation operations (e.g., evalu-
ations of query terms, users, or search results).

Query Modification

[0217] There are two basic types of query modification
rules, those that augment or add terms to a query, and those
that replace query terms. The following is example syntax
for the query modifier command:

<QueryModifier type="augment" value="query term"/>
<QueryModifier type="replace” query="query term”
value="replacement term"/>

[0218] The type attribute defines either an augmentation or
replacement type query modification. The value attribute
includes the query term that is to be added to the user’s
original input search query, or that is to replace the input
search query. The query attribute is optional. If present, then
the context processor scans the search query and replaces the
any term matching the query term with the replacement
term. This is useful, for example, to correct misspellings,
expand abbreviations (or contrawise use abbreviations in
place of terms), and other in place adjustments. If the query
attribute is missing, then the entry query string is replaced by
the replacement term. Of course, the replacement term can
include any number of terms.

[0219] Query modification can made conditional on any of
the evaluation commands. For example:

<QueryModifier type=“augment” value="Digital SLR”>
<query.denot.InstanceOf>Digital SLR Camera</query.denot>
</QueryModifer>

[0220] This example would reformulate a query, say the
query “D100” to include another query “Digital SLR” since
the term “D100” denotes an instance of a digital SLR
camera, according to the knowledge base file 904.

US 2007/0038601 Al

[0221] As another example:

<QueryModifier type=“augment” value="Professional reviews”>
<user.property>professional </user.property>
</QueryModifer>

[0222] In this example, assume again the user’s query is
“D100.” Here, the properties of the current user are evalu-
ated. If the user is determined to be “professional”, based on
properties available from the browser, site activity history,
login and password, etc. For example, if the user access a
number of pages in the vertical content site dedicated to
professional or expert level information (e.g., detailed tech-
nical pages), then the user may be inferred to be a “profes-
sional” user, even though no other information is known
about the user’s identity. In this case, the query is reformu-
lated to include the term “professional reviews” even though
the user did not include these terms in the query.

[0223] These are but a few examples of a how a vertical
content provider can extend and improve the user’s queries
based on his own expertise and the flexible context process-
ing operations.

References to Related Contexts

[0224] A context file 902 can reference or include another
context file 902, as described above, to form an arbitrary
graph of connections. Several elements are used for refer-
encing context files.

[0225] A context file can include another context file, as
follows:

[0226] <include scr="path name”>

[0227] The include command references another context
file 902 as being included in the current context file. The
context processor will read the included context file and
process all of the instructions therein. Pathname identifies
the location of included context file 902. Included context
files 902 can be used for any type of context processing
operation.

[0228] A context file can also identify a related context
file, as follows:

<relContext href="path name”>
<anchorText>context description<anchorText>
</relContext>

[0229] and

<relContext href="path name”>context descrip-
tion</relContext>

[0230] The relContext command identifies a related con-
text for the current context file. The relContext command
can be used in both pre-processing and post-processing
operations. Examples of the use of related contexts in
post-processing operations are illustrated in FIG. 11, and in

Feb. 15, 2007

FIGS. 2 and 3. The context description is anchor text that the
user will see in the browser. When selected, the identified
related context file is retrieved and processed. The first type
of related context command is used to define related con-
texts for varying types of information needs. FIG. 2 illus-
trates this type of related context via related context links
204. The first link 204 there is associated with a related
context file 902 (e.g., context file 902%) that includes the
following instructions:

<relContext href=" /chooseCamera”>

<anchorText>If you are trying to decide which camera
to buy ...</anchorText>
</relContext>

[0231] This command is processed by the context proces-
sor when the link 204 on the anchor text is selected, and the
corresponding context file “cameras/chooseCamera” is
retrieved and processed. The resulting page is illustrated in
FIG. 3.

[0232] The relContext command may also be used with
the various types of evaluation commands, to make the
reference to the related context conditional. For example:

<relContext href=" /chooseCamera”>
<query.denot.instanceOf>Digital SLRCamera</query.denot
.instanceOf>
<anchorText>If you are trying to decide which camera

to buy ...</anchorText>

</relContext>

[0233] Here, the related context DigitalSLRCamera is
accessed here only if the query.denote command evaluates
true, that is where the query terms denote an instance of a
model of digital camera listed in the knowledge base file
904. Similar conditional evaluations can be based on the
properties of the user or the properties of the search results.

[0234] The second type of related context command is
used to define related contexts that appear as annotations in
conjunction with search results. This type of related context
is illustrated in FIG. 2 by related context links 206. For
example, the related context file 902/ that generated FIG. 2
also includes the following instructions:

<relContext href =“cameras/Manufacturer”>More Manufacturer
Pages</relContext>

[0235] Here, the anchor text “More Manufacturer Pages”
is then linked to the associated context file 902, which
contains further instructions to searching and displaying
pages for digital camera manufacturers.

[0236] The relContext command takes as an href any valid
URL, and thus, can also reference any available Internet site.
For example, the relContext command can directly link to an
online encyclopedia or dictionary to provide an annotation
for a search result that would provide a detailed explanation
of the result.

US 2007/0038601 Al

[0237] 1In pre-processing operations, a second type of
cross reference to related context is used, context redirec-
tion. The command format for the context redirection com-
mand is as follows:

<contextRedirect href =“pathname”>redirection condi-
tion*</contextRedirect>

[0238] Again, pathname indicates the location of another
context file to be processed if certain redirection conditions
are met. The redirection conditions (one or more as indicated
by “*”) can be based on any available information about the
query (e.g., query terms, or information dependent thereon),
the user (e.g., IP address, login, site click through history,
prior purchases), or other programmatically available infor-
mation.

[0239] In one embodiment the redirection conditions can
be based on the any evaluation commands previously dis-
cussed:

<query.denot.property>property__value</query.denot.property>
<query.denot.InstanceOf>class__id</query.denot.InstanceOf>
<query>query__term</query>
<user.property >property_ value</user.property>
<user.InstanceOf>class__id</user.instanceOf>
<result.tag>tag value</result.tag>
<result.tag.InstanceOf>class__id</result.tag. InstanceOf>

[0240] For example, assume the knowledge base file 904
portion described above. Further, assume the redirection
command:

<contextRedirect href="“Nikon_ cameras”>
<query.denot.Manufacturer>Nikon</query.denot. Manufact

urer>

</contextRedirect>

[0241]

[0242] As above, the query evaluation command is posi-
tively evaluated, since the query term “D100” matches the
name of a camera instance in the knowledge base file 904,
which instance has the Manufacturer property value
“Nikon”. The context processor thus executes the context
redirection command and accesses the context file “Nikon-
_cameras” for further processing. This capability allows the
vertical content provider to his or her own knowledge base
to analyze queries and reformulate them on behalf of the
user.

and the input search query “D110”.

[0243] The user evaluation user.InstanceOf can likewise
be used to redirect context processing based on the particular
user properties For example, consider the redirection com-
mand:

<contextRedirect href="“NegativeProfessionalReviews”>
<user.InstanceOf>Professional User</user.InstanceOf>
</contextRedirect>

Feb. 15, 2007

[0244] Here, the properties of the user can be ascertained
from the knowledge base file 904, and other information as
described (e.g., site history). If the user is determined to be
a professional user, then the context processor accesses and
processes the NegativeProfessionalReviews context file.

[0245] As mentioned, any number of redirection condi-
tions (e.g. evaluations) can be used together in a context
redirection command such as:

<contextRedirect href="Recommended__SLR__cameras™>
<query.denot.megapixels
matchType="greaterThanOrEqualTo”>6mp</query.denot.megapixel
s>
<query.denot.megapixels
matchType="lessThanOrEqualTo”>8mp</query.denot.megapixels>
<query.denot.modelyear>2005</query.denot.modelyear>
</contextRedirect>

[0246] which would effect the context redirection only
when all of the redirection conditions are satisfied, e.g., for
a query containing the terms which denote digital SLR
cameras with between 6 mp and 8 mp, for the 2005 model
year.

[0247] The context redirection is particularly powerful
when combined with the query modification rules, previ-
ously discussed. A vertical content provider can define a
number of context redirections based on query terms, each
of redirects the context processor to an appropriate context
file, depending on say, whether the query denotes shopping
for a camera versus seeking customer warranty information.
In the respective target context files, specific query modifi-
cation rules would then be processed to reformulate the
query as most appropriate given the identified context.

Restriction

[0248] In post-processing operations, the context files can
be used to control the scope, number, or types of results and
entries that are provided to the user. To this end, the context
files can include conditional instructions that define various
types of restrictions (e.g., filters). These restrictions are
provided by the restriction command. This command has the
following syntax:

PTEE

<Restriction count="n">
restriction condition*
restriction action*®

</Restriction>

[0249] The restriction condition operates in a similar man-
ner to the redirection condition previously discussed. Here,
the restriction condition is evaluated with respect to the
attributes (tags), if any, associated with the search results, as
compared to the entries in the site/page annotation file. Any
attribute (or set of attributes) can be used as restriction
conditions, such as the type, source, year, location, of a
document or page, to name but a few. The context processor
receives the search results (here a set of candidate search
results) from the search engine, and compares each candi-
date result (be it a site, page, media page, document, etc.)
with the entries listed in the site/page annotation file 900.

US 2007/0038601 Al

Only those candidate results which are listed in the anno-
tation file 904 and have the specified matching attributes are
included in the context-processed search results. The restric-
tion count is an optional parameter and indicates how many
of the matching results are to be included in the context-
processed search results. If left out, then all matching results
are included.

[0250] The restriction action is an optional parameter that
specifies a further action to take if the restriction condition
is met. This action includes, for example, annotating the
search results with a link to a related context (using the
relContext command), such as links 206 illustrated in FIG.
2.

[0251] Consider the following example:

<Restriction count="2">

<descriptor>Review</descriptor>

<rank>5+</rank>

<relContext href =“Reviews”>More Review</relContext>
</Restriction>
<Restriction count="2">

<descriptor>Guide</descriptor>

<rank>5+</rank>

<relContext href =“Guides”>More Guides</relContext>
</Restriction>

[0252] Assume that the search query was a general query
on “digital cameras™, and that the search results returned
1,000,000 pages covering everything from manufacturer’s
and retailers of digital cameras, to online user forums and
services for printing photographs. Since the user’s search
was quite general, the vertical content provider can use the
post-processing to provide a selection of a number of
different types of search results, as illustrated, for example
in FIG. 2. In processing the above code example then, the
first restriction command causes the context processor to
select the first two search results that have matching entries
(i.e., matching URLs or portions thereof in the site/page
annotation file 900 and include the descriptor “Review”. The
context processor also uses the restriction action for the
related context, to annotate these two search results with a
link to related context file “Reviews”, with the link labeled
“More reviews.”FIG. 2 shows an example of such annota-
tion link 206.

[0253] The second restriction causes the context processor
to select the first two search results that have matching
entries in the site/page annotation file and include the
descriptor “Guide.” The context processor would then use
the restriction action to annotate these results with a link to
the related context file “Guides.”

[0254] As mentioned previously, the context processing
operations can undertaken by multiple different entities in
the system, including at the client device, the vertical
content site, and the programmable search engine, each
using their own locally available context files. Thus, all of
the above describe features can be effectively integrated
within and between different system entities. For example, a
vertical context provider can define a context file that defines
various context redirections using the redirection condition
based on the global knowledge base files. This enables the
vertical content provider to leverage the global knowledge
base, but add their own personal perspective and judgment
to its underlying facts.

Feb. 15, 2007

Search Engine Control Data

[0255] Finally, context files 902 can contain instructions
that control the operation of the programmable search
engine itself in terms the selection of which particular
document collections to be searched, and various algorith-
mic or parametric settings for the search engine. Selection of
a document collection for searching is provided by the
following command:

<Corpus ref =“document__collection”>
//other context operations//
</Corpus >

[0256] The corpus command takes as its argument a
reference to the name (or URL) or a selected document
collection. The document collection name is mapped (either
locally, or by the programmable search engine) to document
collection and corresponding index available to the pro-
grammable search engine (e.g. particular index in the con-
tent server/index 870).

[0257] The corpus command can be made conditional
using any of the foregoing described evaluation commands,
as well as including any of the restriction, redirection,
related context, and so forth.

[0258] For example, a particular document collection may
be selected where the query is determined using the evalu-
ation commands to include certain keywords or instances of
objects in the knowledge base. Thus, a query that is evalu-
ated to include a query term denoting a scientific term, like
“Heloderma suspectum”, or a medical term, would then
cause a selection of an appropriate scientific literature data-
base.

[0259] Control of search engine parameters is via the
SearchControlParams operations. In general, most modern
search engines use a number of different attributes of a
search query and the individual indexed documents (e.g.,
frequencies of terms in URL, anchor text, body, page rank
etc.) to determine which documents best satisfy the query.
The documents are then ranked accordingly. A ranking
function is essentially a weighted combination of the various
attributes. Normally, the weights of the attributes are fixed,
or at least not externally controllable by third parties. The
SearchControlParam however gives vertical content provid-
ers access to these weights. The syntax is as follows:

<SearchControlParams>
<attribute-name>weight</attribute-name>
<attribute-name>weight</attribute-name>

</SearchControlParams>

[0260] Here, attribute-name is the name of the particular
attribute used by the search engine to calculate a relevance
ranking. The specific attribute names are disclosed by the
programmable search engine provider, since they are inter-
nal to that provider’s own engine. Typical attributes, as
indicated above including term frequency in URL, term
frequency in body, term frequency in anchor text, term

US 2007/0038601 Al

frequency in markup, page rank. The SearchControlParams
operator can work with any exposed attribute or parametric
control of a programmable search engine, and thus the
foregoing are understood to be merely exemplary. The
weights used in this operator can be either normalized or
non-normalized, and in the latter case, the input weights can
be internally normalized by the context processor or by the
search engine itself. A vertical content provider need not
specify weights for all the attributes the search engine uses,
but only those of interest to the provider of the context file.

[0261] The present invention has been described in par-
ticular detail with respect to one possible embodiment.
Those of skill in the art will appreciate that the invention
may be practiced in other embodiments. First, the particular
naming of the components, capitalization of terms, the
attributes, data structures, or any other programming or
structural aspect is not mandatory or significant, and the
mechanisms that implement the invention or its features may
have different names, formats, or protocols. Further, the
system may be implemented via a combination of hardware
and software, as described, or entirely in hardware elements.
Also, the particular division of functionality between the
various system components described herein is merely
exemplary, and not mandatory; functions performed by a
single system component may instead be performed by
multiple components, and functions performed by multiple
components may instead be performed by a single compo-
nent.

[0262] Some portions of above description present the
features of the present invention in terms of algorithms and
symbolic representations of operations on information.
These algorithmic descriptions and representations are the
means used by those skilled in the data processing arts to
most effectively convey the substance of their work to others
skilled in the art. These operations, while described func-
tionally or logically, are understood to be implemented by
computer programs. Furthermore, it has also proven conve-
nient at times, to refer to these arrangements of operations
as modules or by functional names, without loss of gener-
ality.

[0263] Unless specifically stated otherwise as apparent
from the above discussion, it is appreciated that throughout
the description, discussions utilizing terms such as “calcu-
lating” or “determining” or “identifying” or the like, refer to
the action and processes of a computer system, or similar
electronic computing device, that manipulates and trans-
forms data represented as physical (electronic) quantities
within the computer system memories or registers or other
such information storage, transmission or display devices.

[0264] Certain aspects of the present invention have been
described using commands, mnemonics, tokens, formats,
syntax, and other programming conventions. The particular
selections of the names, formats, syntax, and like are merely
illustrative, and not limiting. Those of skill in the art can
readily construct alterative names, formats, syntax rules, and
so forth for defining context files and programming the
operations a programmable search engine via context pro-
cessing.

[0265] Certain aspects of the present invention include
process steps and instructions described herein in the form
of an algorithm. It should be noted that the process steps and
instructions of the present invention could be embodied in

Feb. 15, 2007

software, firmware or hardware, and when embodied in
software, could be downloaded to reside on and be operated
from different platforms used by real time network operating
systems.

[0266] The present invention also relates to an apparatus
for performing the operations herein. This apparatus may be
specially constructed for the required purposes, or it may
comprise a general-purpose computer selectively activated
or reconfigured by a computer program stored on a computer
readable medium that can be accessed by the computer. Such
a computer program may be stored in a computer readable
storage medium, such as, but is not limited to, any type of
disk including floppy disks, optical disks, CD-ROMs, mag-
netic-optical disks, read-only memories (ROMs), random
access memories (RAMs), EPROMs, EEPROMs, magnetic
or optical cards, or any type of media suitable for storing
electronic instructions, and each coupled to a computer
system bus.

[0267] The algorithms and operations presented herein are
not inherently related to any particular computer or other
apparatus. Various general-purpose systems may also be
used with programs in accordance with the teachings herein,
or it may prove convenient to construct more specialized
apparatus to perform the required method steps. The
required structure for a variety of these systems will be
apparent to those of skill in the art, along with equivalent
variations. In addition, the present invention is not described
with reference to any particular programming language. It is
appreciated that a variety of programming languages may be
used to implement the teachings of the present invention as
described herein, and any references to specific languages
are provided for disclosure of enablement and best mode of
the present invention.

[0268] Finally, it should be noted that the language used in
the specification has been principally selected for readability
and instructional purposes, and may not have been selected
to delineate or circumscribe the inventive subject matter.
Accordingly, the disclosure of the present invention is
intended to be illustrative, but not limiting, of the scope of
the invention, which is set forth in the following claims.

What is claimed is:
1. A method of processing a search query, the method
comprising:

receiving a search query for a user from a host system;

identifying at least two contexts, each context being
associated with at least one of the user or a host system;

aggregating the at least two contexts to form an aggre-
gated context;

processing the query using the aggregated context by
programmatically altering at least one of:

execution of the search engine on the query; and
the search results;
to produce processed search results; and

providing the processed search results to the user.
2. The method of claim 1, wherein identifying the at least
two contexts comprises:

identifying at least one common characteristic among the
contexts.

US 2007/0038601 Al

3. The method of claim 1, wherein identifying the at least
two contexts comprises:

identifying at least one common tag among the contexts.
4. The method of claim 1, wherein identifying the at least
two contexts comprises:

identifying at least one common result generated by the

contexts.

5. The method of claim 1, wherein the processed search
results comprise search results for each of the identified
contexts.

6. The method of claim 1, wherein the processed search
results comprise merged search results for each of the
identified contexts.

7. The method of claim 1, wherein aggregating the at least
two contexts comprises combining at least one characteristic
of a first context with at least one characteristic of a second
context.

8. A method of processing a search query, the method
comprising:

receiving a search query for a user from a host system;

identifying at least two contexts, each context being
associated with at least one of the user or a host system;

for each of the identified contexts, processing the query
using the identified context by programmatically alter-
ing at least one of:

execution of the search engine on the query; and
the search results;
to produce processed search results; and
aggregating the processed search results;

providing the aggregated search results to the user.

9. The method of claim 8, further comprising, prior to
providing the aggregated search results to the user, removing
duplicate search results.

10. The method of claim 8, wherein receiving the search
query comprises receiving a search query entered by a user
via a general search site.

11. The method of claim 10, wherein identifying at least
two contexts comprises identifying contexts based on at
least a portion of the received search query.

12. The method of claim 10, wherein identifying at least
two contexts comprises:

identifying at least two specialized search sites based on
at least a portion of the received search query; and

identifying contexts associated with the at least two

specialized search sites.

13. The method of claim 8, wherein receiving the search
query comprises receiving a search query entered by a user
via a specialized search site.

14. The method of claim 13, wherein identifying at least
two contexts comprises:

identifying a first context associated with the specialized
search site; and

identifying a second context based on a predetermined
similarity between the specialized search site and a
second specialized search site.
15. The method of claim 14, wherein identifying a second
context comprises:

Feb. 15, 2007

identifying a second specialized search site associated
with subject matter similar to the first specialized
search site.
16. The method of claim 14, wherein identifying a second
context comprises:

identifying a second specialized search site that yields

results similar to the first specialized search site.

17. The method of claim 13, wherein the processed search
results comprise at least one result derived from a context
associated with a specialized search site other than the
specialized search site used for entering the query.

18. The method of claim 13, further comprising:

receiving, from the user, an indication as to whether to
include results associated with a specialized search site
other than the specialized search site used for entering
the query;

wherein, responsive to the user indicating that results
associated with a specialized search site other than the
specialized search site used for entering the query
should be included, the processed search results com-
prise at least one result derived from a context associ-
ated with a specialized search site other than the
specialized search site used for entering the query.

19. The method of claim 8, wherein processing the query

comprises at least one of:

pre-processing the query using the identified context by
programmatically altering execution of the search
engine on the query, to produce search results respon-
sive to the pre-processed query; and

post-processing the search results using the identified

context by programmatically altering the search results.

20. The method of claim 8, wherein processing the query
comprises:

pre-processing the query using the identified context by
programmatically altering execution of the search
engine on the query, to produce search results respon-
sive to the pre-processed query; and

post-processing the search results using the identified

context by programmatically altering the search results.

21. A computer program product for processing a search
query, the computer program product comprising:

a computer-readable medium; and
computer program code, encoded on the medium, for:
receiving a search query for a user from a host system;

identifying at least two contexts, each context being
associated with at least one of the user or a host
system,

aggregating the at least two contexts to form an aggre-
gated context;

processing the query using the aggregated context by
programmatically altering at least one of:

execution of the search engine on the query; and
the search results;
to produce processed search results; and

providing the processed search results to the user.

US 2007/0038601 Al
23

22. The computer program product of claim 21, wherein
identifying the at least two contexts comprises:

identifying at least one common characteristic among the
contexts.
23. The computer program product of claim 21, wherein
identifying the at least two contexts comprises:

identifying at least one common tag among the contexts.
24. The computer program product of claim 21, wherein
identifying the at least two contexts comprises:

identifying at least one common result generated by the

contexts.

25. The computer program product of claim 21, wherein
the processed search results comprise search results for each
of the identified contexts.

26. The computer program product of claim 21, wherein
the processed search results comprise merged search results
for each of the identified contexts.

27. The computer program product of claim 21, wherein
aggregating the at least two contexts comprises combining at
least one characteristic of a first context with at least one
characteristic of a second context.

28. A computer program product for processing a search
query, the computer program product comprising:

a computer-readable medium; and
computer program code, encoded on the medium, for:
receiving a search query for a user from a host system;

identifying at least two contexts, each context being
associated with at least one of the user or a host
system,

for each of the identified contexts, processing the query
using the identified context by programmatically
altering at least one of:

execution of the search engine on the query; and
the search results;
to produce processed search results; and
aggregating the processed search results;

providing the aggregated search results to the user.

29. The computer program product of claim 28, further
comprising, prior to providing the aggregated search results
to the user, removing duplicate search results.

30. The computer program product of claim 28, wherein
receiving the search query comprises receiving a search
query entered by a user via a general search site.

31. The computer program product of claim 30, wherein
identifying at least two contexts comprises identifying con-
texts based on at least a portion of the received search query.

32. The computer program product of claim 30, wherein
identifying at least two contexts comprises:

identifying at least two specialized search sites based on
at least a portion of the received search query; and

identifying contexts associated with the at least two

specialized search sites.

33. The computer program product of claim 28, wherein
receiving the search query comprises receiving a search
query entered by a user via a specialized search site.

34. The computer program product of claim 33, wherein
identifying at least two contexts comprises:

Feb. 15, 2007

identifying a first context associated with the specialized
search site; and

identifying a second context based on a predetermined
similarity between the specialized search site and a
second specialized search site.
35. The computer program product of claim 34, wherein
identifying a second context comprises:

identifying a second specialized search site associated
with subject matter similar to the first specialized
search site.

36. The computer program product of claim 34, wherein
identifying a second context comprises:

identifying a second specialized search site that yields

results similar to the first specialized search site.

37. The computer program product of claim 33, wherein
the processed search results comprise at least one result
derived from a context associated with a specialized search
site other than the specialized search site used for entering
the query.

38. The computer program product of claim 33, further
comprising:

receiving, from the user, an indication as to whether to
include results associated with a specialized search site
other than the specialized search site used for entering
the query;

wherein, responsive to the user indicating that results
associated with a specialized search site other than the
specialized search site used for entering the query
should be included, the processed search results com-
prise at least one result derived from a context associ-
ated with a specialized search site other than the
specialized search site used for entering the query.

39. The computer program product of claim 28, wherein

processing the query comprises at least one of:

pre-processing the query using the identified context by
programmatically altering execution of the search
engine on the query, to produce search results respon-
sive to the pre-processed query; and

post-processing the search results using the identified

context by programmatically altering the search results.

40. The computer program product of claim 28, wherein
processing the query comprises:

pre-processing the query using the identified context by
programmatically altering execution of the search
engine on the query, to produce search results respon-
sive to the pre-processed query; and

post-processing the search results using the identified

context by programmatically altering the search results.

41. A system for processing a search query, the system
comprising:

an input mechanism, for receiving a search query for a
user from a host system;

a search engine interface, coupled to the input mecha-
nism, for identifying at least two contexts, each context
being associated with at least one of the user or a host
system,

US 2007/0038601 Al

a context aggregator, coupled to the search engine inter-
face, for aggregating the at least two contexts to form
an aggregated context;

a context processor, coupled to the context aggregator, for
processing the query using the aggregated context by
programmatically altering at least one of:

execution of the search engine on the query; and
the search results;
to produce processed search results; and

an output mechanism, coupled to the context processor,

for providing the processed search results to the user.

42. The system of claim 41, wherein the context aggre-
gator identifies at least one common characteristic among
the contexts.

43. The system of claim 41, wherein the context aggre-
gator identifies at least one common tag among the contexts.

44. The system of claim 41, wherein the context aggre-
gator identifies at least one common result generated by the
contexts.

45. The system of claim 41, wherein the processed search
results comprise search results for each of the identified
contexts.

46. The system of claim 41, wherein the processed search
results comprise merged search results for each of the
identified contexts.

47. The system of claim 41, wherein the context aggre-
gator combines at least one characteristic of a first context
with at least one characteristic of a second context.

48. A system for processing a search query, the system
comprising:

an input mechanism, for receiving a search query for a
user from a host system;

a search engine interface, coupled to the input mecha-
nism, for identifying at least two contexts, each context
being associated with at least one of the user or a host
system,

a context processor, coupled to the search engine inter-
face, for, for each of the identified contexts, processing
the query using the identified context by programmati-
cally altering at least one of:

execution of the search engine on the query; and
the search results;
to produce processed search results; and

a context aggregator, coupled to the context processor, for
aggregating the processed search results;

an output mechanism, coupled to the context processor,

for providing the aggregated search results to the user.

49. The system of claim 48, wherein the context aggre-
gator removes duplicate search results.

50. The system of claim 48, wherein the input mechanism
comprises a general search site.

51. The system of claim 50, wherein the search engine
interface identifies at least two contexts based on at least a
portion of the received search query.

52. The system of claim 50, wherein the search engine
interface identifies at least two contexts by:

24

Feb. 15, 2007

identifying at least two specialized search sites based on
at least a portion of the received search query; and

identifying contexts associated with the at least two
specialized search sites.
53. The system of claim 48, wherein the input mechanism
comprises a specialized search site.
54. The system of claim 53, wherein the search engine
interface identifies at least two contexts by:

identifying a first context associated with the specialized
search site; and

identifying a second context based on a predetermined
similarity between the specialized search site and a
second specialized search site.
55. The system of claim 54, wherein the search engine
interface identifies a second context by:

identifying a second specialized search site associated
with subject matter similar to the first specialized
search site.
56. The system of claim 54, wherein the search engine
interface identifies a second context by:

identifying a second specialized search site that yields

results similar to the first specialized search site.

57. The system of claim 53, wherein the processed search
results comprise at least one result derived from a context
associated with a specialized search site other than the
specialized search site used for entering the query.

58. The system of claim 53, wherein:

the input mechanism receives, from the user, an indication
as to whether to include results associated with a
specialized search site other than the specialized search
site used for entering the query;

and wherein, responsive to the user indicating that results
associated with a specialized search site other than the
specialized search site used for entering the query
should be included, the context processor processes
search results by including at least one result derived
from a context associated with a specialized search site
other than the specialized search site used for entering
the query.

59. The system of claim 48, wherein the context processor

performs at least one of:

pre-processing the query using the identified context by
programmatically altering execution of the search
engine on the query, to produce search results respon-
sive to the pre-processed query; and

post-processing the search results using the identified

context by programmatically altering the search results.

60. The system of claim 48, wherein the context processor
performs at least one of:

pre-processing the query using the identified context by
programmatically altering execution of the search
engine on the query, to produce search results respon-
sive to the pre-processed query; and

post-processing the search results using the identified
context by programmatically altering the search results.

#* #* #* #* #*

