US 20060036593A1

a2 Patent Application Publication (o) Pub. No.: US 2006/0036593 A1l

a9 United States

Dean et al.

43) Pub. Date: Feb. 16, 2006

(549) MULTI-STAGE QUERY PROCESSING
SYSTEM AND METHOD FOR USE WITH
TOKENSPACE REPOSITORY

(76) Inventors: Jeffrey Adgate Dean, Palo Alto, CA
(US); Paul G. Haahr, San Francisco,
CA (US); Olcan Sercinoglu, Mountain
View, CA (US); Amitabh K. Singhal,
Palo Alto, CA (US)

Correspondence Address:

MORGAN, LEWIS & BOCKIUS, LLP.
2 PALO ALTO SQUARE

3000 EL. CAMINO REAL

PALO ALTO, CA 94306 (US)

(21) Appl. No.: 10/917,746

(22) Filed: Aug. 13, 2004

Information Retrieval System

Publication Classification

(51) Int. CL
GO6F 17/30 (2006.01)

(52) US.CL oo 707/4

(7) ABSTRACT

A multi-stage query processing system and method enables
multi-stage query scoring, including “snippet” generation,
through incremental document reconstruction facilitated by
a multi-tiered mapping scheme. At one or more stages of a
multi-stage query processing system a set of relevancy
scores are used to select a subset of documents for presen-
tation as an ordered list to a user. The set of relevancy scores
can be derived in part from one or more sets of relevancy
scores determined in prior stages of the multi-stage query
processing system. In some embodiments, the multi-stage
query processing system is capable of executing one or more
passes on a user query, and using information from each pass
to expand the user query for use in a subsequent pass to
improve the relevancy of documents in the ordered list.

100
Document Processing System
102
112
> Lexicon Generator L/\. 108
Mappings
y Encoded
Document > Encoding/Decoding Tokens Tokenspace
Repository System Repository
J
Y
Query String
Query —_—]
Processing Tokenspace
System Query Processor(s) <+ hverse Index
104 Results
-

114 >

116 >

US 2006/0036593 A1

Patent Application Publication Feb. 16,2006 Sheet 1 of 10

A gll

L ainbi4

A 143

J
' ———
X9pu| 9SI9AU| Shinsey vol
> s)iossasoid A1an wo)sAg
aoedsuayoy) d ° Y Buissadsoud
oy Aianp
Buiyg Aisnd
S
N oLl T
LN
As
A10})isodoy | - we}s Kioyisodoy
aoedsuajoy suayo) Buipodeq/buipoouz ¢ JUSWINS0Q
papoaug
q sBuiddepy
ZiL 801 /\, JOJEIDBUIL) UOIIXDT] - 90l
201
waysAg Buissasold juswnaog
ool

wa)sAg jeAal}ay Uonew.ou|

US 2006/0036593 A1

Patent Application Publication Feb. 16,2006 Sheet 2 of 10

__ a.nbi,
(1] ¥4 ¢ = - —
Z-\ SUoIIXaT-IuIN 80¢ 90¢
104 depy abuey pijea Z-V SUodIxaT-iulN uodIxaT [eqojo
. °
[4
- ®
. . ENajuaxoro| fuayoy
Y [J
“Nauaorsy ‘uayoy
T
Sod VEIS a "aueoLo (Yauedor | [“Nquexors| ‘ueyoy
sod HeIg o) —| “aueyoro |auanoL | [Nguewors| oyayoy
%sod ueis g < ‘auaxoLo Yausiol | [Maueers|yopenoung
Vsod Hels v — aluanolo |Yquavo1 Oqiuado o |'sbel TNLH
suojisod Buiiels | suoaixat-iuIy — SQIUaYol | squaol sqguaxol sua)oj
abuey uaxoy leqo|o [e207 {eqojo anbiupn
e S~a \ | | N 4
lllllllllllll IIIII ‘. | \ \ \
llllllllll Illlllllla \ /r \
waysAg Buipoosag Japjng Japjing
/Buiposugy < sBuiddey uodIXeT-IUIN ‘ uo2ixa7 [eqojo

o_‘_‘ﬂ

.chﬂ

A1 74 ”

Y
801
J0JeJIUIG) UOIIXIT

50¢C
xyaid

Aoyisodoy
juawnaoq

S

901

US 2006/0036593 A1

Patent Application Publication Feb. 16,2006 Sheet 3 of 10

ge¢ a4nbi4
Japoaaq
sdnoun (reuondo) uonewou|
pepoouy | £eq thbuay 49p0od3(€jjeq joisn
-9|qeleA
1% m rA %% ﬂ
80¢
waysAg Buipooeg
ve ainbi4
Japooug
sdnoug (jeuondo) (reuondo) uoeuLojuj
paposu3 _ S.Mn__nuﬂ”_”._ ¢ Japoasu] ejjaQq ¢ 10SS3201d-9id) joIsn
90¢ W bog W m.
coe
00¢

wajsig Buipoouy

US 2006/0036593 A1

Patent Application Publication Feb. 16,2006 Sheet 4 of 10

[AAX

<

oju| 13NqLPY

ojuj ganquUuyvy

oju| L9anqLBy

9i¢

<

22934V

103Y-VY

¢ ainbi4
0z¢ 8i¢
wayshs plo23ay
buiposag |e——» saNqUPY
/Buiposuy paposug
vie

waysAg Buipoaaqg/buipoou] anquUPy

093y-v

a|qe] pl1ooay
sanqURY

0
M/usod

US 2006/0036593 A1

Patent Application Publication Feb. 16,2006 Sheet 5 of 10

D E—
$01028

‘suolisod

‘sg@jooq
Jo Jos jnsay

suonisod
jo (shsn

a.1nbi
suonisod 4 4
jo Aﬂxm_._ dnyoo aBejg puosag cop dnyo01] 8be3g 3841y
uopisod “day| xaieod 19S'vEL | LOPS9
o160 -
Bunoog . pd .
. B All ® .
21601 “sgroog _° sgiveq hd ® suonisod
uesjoog| ,03s17| UOHISOd day Laiooqg J0 suopnisod €L I Jo (shsn
W e uonisod ‘dey 0Ql20Q Bunieis 0 0
l
o> ° dew giooq sqiveq yo lee/Msod
m suopisod Buiuelg 47
oLy 90¥
)si uonisod Aiojisoday :zgjuayol
depy
" pi023y
® Xapul
o} qjuayoy
(s)aiuajoyr
Is1 uonisod Aioysoday :Lqgjuenol W leqoio
is17 uonisod Aiojisoday :pqjuayoL vov
<Ly uogiIx9]
Xapu| 9SiaAU] [eq01
80% M 01 Svm 4
waysAg Buissasoid Aianpd (s)uua) Asond

US 2006/0036593 A1

Patent Application Publication Feb. 16,2006 Sheet 6 of 10

805 @:oo_xm.._ vwfm\/ Aiojisoday (s)uooixa] ajqel ,\/. S 0&3@..&
VA [eqol9 asedsuayo) -1y A aNqURY 2zs
L1S _||_ Eﬁ_gw m:.uooc_ ees H
! a
S : _\Lm
jmmmm e _ ss0Q _
! (reuondp) ' (so0Qg (49sn ol) (sa0qg s“s
\ °Inpomw | (4esn 01) Z do] 199198 sooQ A do] josjeg sa102g ‘sd0Qg
| yoeqpead | sooQ A|_ 9x3ju09 uo A|_ ‘sopnqupy uo | ay) u suonisod
| aoueAD|OY ' ———— paseg 21095) |« ———L 1 peseg a100g) [¢—— JosisI
I ——— 2. S S| ossasoud $”S''S | Jossasoid ‘sqlooq
§'S s91038 fionp $84095 's00Q fianp 40138 jInsey
suuay S$I2ddIUS | 5pe1g ypunoy | O VI SUOHISOD | aBeyg paty z abe1g
uoisuedxy sairod Jo sisi
Aianp maN 30198 }nsay > ‘sg|ooq w
919 ¥ abeyg ¢S 02S jolag)nsay
W =7 , €obeg 81LS
suon|sod xapuj _
————————— TR T 805 1[eL)) Cnl
dep gioeg aoedsuayol _ N leqo|9
vLS sarea 1 swJa|
VA 1S _ uoisuedxg Suo
. sqjuaNo
(1esn 01) (sooq (49sn o)) sog | SQIUSIOLD fsenp A 1
"o anD
sooq | xdoj 199198 s90Q | _ N
‘Ruwixold uo AIA||_| 10ss0301d
. J|A|H_r paseq a102g) |« Aionp A|_l ._QMMNWN ———————— ._M_Mhzmm_ —] MAand
S '§ 88103S | Jossasoud | S 99S | afegysuy sgiuao19
‘spoq ayj ul fuenp suonisod _ joisi
suonisod Jo sIsI | obejg puosag | SAIP0A 40 S ﬂ ﬂ W
‘sarooq 1SINSeY 015 | 90s v0S 208
10 395 }insay | abeig 005
Z 9bejg weoysAg Buissasold Lianp abejs- N

US 2006/0036593 A1

Patent Application Publication Feb. 16,2006 Sheet 7 of 10

9 ainbi4

deyy abuey Aipiep

Spi1023Yy 3ANqLPY

Aioyisoday aoedsuayo]

(s)uodixa-luim

(s)uoodixa jeqo|D

wajsAg Bujpoosuz

10Jelauac) uodixa]

3|NPOA UOIEIIUNWIWOY YIOMIDN

waysAg bunesado

N—

209 Aiowapy

009
JaMasg Buissasoad Juswinsog

aoeJlaul
MMomeN [N
809
909
(s)ndd

¥09

US 2006/0036593 A1

Patent Application Publication Feb. 16,2006 Sheet 8 of 10

Aiojisoday aoedsuayo|

SP1023Y ANqURY

(s)10ss9901d A1anD

9a1] A1and

Jasied Aiend

depy gjooq

deyy abuey AipijeA

S9|qe] uolesuel] UOIIXaT

weysAg Buipooe(

Xapu| 9si9AU| adedsuayo]

S|NPOJA UOKEIUNWWOY HJOM}SN

weysAg Buiesadp

N—

20, Aoway

/ 91nbi4
°9JBlI9jul
yomieN [T\

80.
N

902
(s)ndo
14175 |

00Z

Janiag Buissasoud Auanp

US 2006/0036593 A1

Patent Application Publication Feb. 16,2006 Sheet 9 of 10

v8 ainbl4 | 508
. ° S}9syO Ao0ig
R Ny ® pue suodixa-} uoibay
u N Z uoibay -
dnoug | uoibay
dnoio °
dnou < 0Z8
2 sjuawnloqg = =
uoiboy ces8 paziuayo) S19syO uodIxaT]
....... e yoo|g uoiboy
. zes “sjesyo | “uoaixa
* \)ooig uoibay
Y 1
S)9SHO uooIXa
Z uoibay 10} ¥ooig uoiboy
suayo)] papooul
Bg1asyo | ®MuooixeT
[h yoolg uoiboy

wa)sAg Buipoouy |

%y 001x07
uolfay

19p|ing

saleuonaiqg
uoibay

N

018

SU09IX97 uoibay

0

(y2Z/usod
uelg)
uoibay

902
uooIxaT |eqo|o

®

[

®

£+N £

aius)olsd; ‘uayoy
“Naluaxor9 Zuaroy
*Naglueyol9l ‘ueyoy
"qluanoro| oygyo,

I*N
o_:mxo._b uonenjdung

g8 a.inbiq

L

. L1114
%quaxoy o |‘sbel TNLH xijd2.id
sqgluayol suayo|
leqo|o anbiun
/t
\
\
/f
Japjing fioyisoday
uo2IXa jeqolo ‘ juawnoo(g

coe ﬂ

<
801
10}eIDBUIL) UOIIXD

90 _.ﬂ

US 2006/0036593 A1

Patent Application Publication Feb. 16,2006 Sheet 10 of 10

g uoibay

J0 v)20|g 0}
Suayoj] papoou3

g uoibay jo v ya0|g9

g6 ainb14

906 ¢06

< m

yibusj

adA)

= |epoo Ado)

0L6 ﬂ 806 ﬂ

v6 ainbi4

[2'8lD
[otlen

(6191
[z'2lo

018

wa)sAg Buipo

Buisiudwog suayjo] (jeqojo)
28

(adAy Aq pauyoads

yibus|) uasoy odhy

V06 A 206 ﬂ

g uoibay
10} UODIXDT]

0¢

eee | |7 |VGGL

ol

el

L | VGGl |eee | €2

US 2006/0036593 Al

MULTI-STAGE QUERY PROCESSING SYSTEM
AND METHOD FOR USE WITH TOKENSPACE
REPOSITORY

RELATED APPLICATIONS

[0001] This application is related to U.S. patent applica-
tion Ser. No. , (Morgan Lewis file 060963-5018-US),
entitled “System and Method For Encoding And Decoding
Variable-Length Data”, and U.S. patent application Ser. No.
, (Morgan Lewis file 060963-5017-US), entitled
“Document Compression System and Method For Use With
Tokenspace Repository, which applications are incorporated
by reference herein in their entirety.

TECHNICAL FIELD

[0002] The disclosed embodiments relate generally to data
processing systems and methods, and in particular to a
multi-stage query processing system and method for use
with a collection of documents with an associated index
(hereinafter also referred to as a “tokenpace repository”).

BACKGROUND

[0003] Information retrieval systems (e.g., search
engines), match queries against an index of documents
generated from a document corpus (e.g., the World Wide
Web). A typical inverse index includes the words in each
document, together with pointers to their locations within
the documents. A document processing system prepares the
inverted index by processing the contents of the documents,
pages or sites retrieved from the document corpus using an
automated or manual process. The document processing
system may also store the contents of the documents, or
portions of the content, in a repository for use by a query
processor when responding to a query.

[0004] There is a continuing need for more sophisticated
query searching and scoring techniques to ensure that query
results are relevant to the query. Some scoring techniques
may require a partial reconstruction of the candidate docu-
ments, for example to determine the context of query terms
or keywords found in the documents. Unfortunately, intro-
ducing of such sophisticated techniques can result in a
degradation of search performance due to the additional
processing and overhead involved.

SUMMARY OF EMBODIMENTS

[0005] The disclosed embodiments include a multi-stage
query processing system and method for use with a tokens-
pace repository. The multi-stage query processing system
and method enables multi-stage query scoring, including
“snippet” generation, through incremental document recon-
struction facilitated by a multi-tiered mapping scheme. At
one or more stages of a multi-stage query processing system
a set of relevancy scores are used to select a subset of
documents for presentation as an ordered list to a user. The
set of relevancy scores can be derived in part from one or
more sets of relevancy scores determined in prior stages of
the multi-stage query processing system. In some embodi-
ments, the multi-stage query processing system is capable of
executing two or more passes on a user query, and using
information from each pass to expand the user query for use
in a subsequent pass to improve the relevancy of documents
in the ordered list.

Feb. 16, 2006

BRIEF DESCRIPTION OF THE DRAWINGS

[0006] FIG. 1 is a block diagram of an embodiment of a
information retrieval system.

[0007] FIG. 2 is a conceptual block diagram of an
embodiment of the lexicon generator of FIG. 1.

[0008] FIG. 3A is a block diagram of an embodiment of
an encoding system for encoding documents for a tokens-
pace repository.

[0009] FIG. 3B is a block diagram of an embodiment of
a decoding system for decoding documents in a tokenspace
repository.

[0010] FIG. 3C is a block diagram of an embodiment of
an attribute encoding/decoding system for encoding/decod-
ing document attributes.

[0011] FIG. 4 is a block diagram of an embodiment of a
query processing system for use with a tokenspace reposi-
tory.

[0012] FIG. 5 is a block diagram of an embodiment of a
multi-stage query processing system for use with a tokens-
pace repository.

[0013] FIG. 6 is a block diagram of an embodiment of a
tokenspace repository server.

[0014] FIG. 7 is a block diagram of an embodiment of a
query processing server.

[0015] FIG. 8a is a block diagram of a second embodi-
ment of a tokenized document repository, and FIG. 8b is a
conceptual block diagram of a second embodiment of the
lexicon generator of FIG. 1.

[0016] FIG. 9A is a conceptual diagram of an encoding
process used in the embodiment of the lexicon generator,
and FIG. 9B depicts exemplary data structures for repre-
senting encoded tokens.

[0017] Like reference numerals refer to corresponding
parts throughout the several views of the drawings.

DESCRIPTION OF EMBODIMENTS

System Overview

[0018] FIG. 1 is a block diagram of an embodiment of an
information retrieval system 100. The information retrieval
system 100 includes a document processing system 102 and
a query processing system 104. The information retrieval
system 100 can be any system that is capable of retrieving
information in response to a query, including but not limited
to one or more computer systems for performing expressed
or implicit document searches on one or more networks,
such as the Internet (e.g., via the World Wide Web) or an
intranet, or locally on a user’s computer (e.g., of files, email,
applications, etc.). Note that the term “documents” means
documents, web pages, emails, application specific docu-
ments and data structures, Instant Messaging (IM) messages,
audio files, video files, and any other data or applications
that may reside on one or more computer systems.

Document Processing System

[0019] The document processing system 102 generally
includes one or more document repositories 106, a lexicon

US 2006/0036593 Al

generator 108, an encoding/decoding system 110 and a
tokenspace repository 112. The encoding/decoding system
110 retrieves documents from the one or more document
repositories 106, parses the documents into tokens, encodes
the tokens into a compressed format using mappings from
the lexicon generator 108, then stores the encoded tokens in
the tokenspace repository 112.

[0020] A “token” can be any object typically found in a
document, including but not limited to terms, phrases,
punctuation, HTML tags and the like. After parsing, a set of
documents is represented as a sequence of tokens. Further-
more, each token in the sequence of tokens has a token
position, which also represents the position of the token in
the set of documents. For example, the first token in the set
of documents may be assigned a position of 0, the second
token in the set of documents may be assigned a position of
1, and so on.

[0021] Tt is noted that in some implementations, a com-
pletely different set of computers are used for encoding
documents than the computers used for decoding docu-
ments. For instance, a web crawling system may include a
document processing system 102 that encodes documents,
while a query processing system 104 may decode selected
portions of the encoded documents. In such implementa-
tions, the document inverse index and tokenspace repository
112 built by the document processing system 102, or copies
thereof, are used by the query processing system 104.

[0022] The lexicon generator 108 generates the mappings
used for encoding a set of documents by parsing the docu-
ments. A first mapping produced by the lexicon generator
108 is herein called the global-lexicon, which identifies all
distinct tokens (herein called unique tokens) in the set
documents, and assigns a global token identifier to each
unique token. A second mapping produced by the lexicon
generator 108 is actually a sequence of mappings, each of
which is herein called a mini-lexicon. Each respective
mini-lexicon is used only for encoding and decoding a
respective range of positions in the set of documents. The
generation and use of the global-lexicon and the mini-
lexicons are explained in more detail below.

Query Processing System

[0023] The query processing system 104 includes one or
more query processors 114 coupled to the encoding/decod-
ing system 110 and a tokenspace inverse index 116. The
tokenspace inverse index 116 maps all the GTokenIDs in the
set of documents to their positions within the documents.
Conceptually, the inverse index 116 contains a list of token
positions for each GTokenID. For efficiency, the list of token
positions for each GTokenID is encoded so as to reduce the
amount of space occupied by the inverse index.

[0024] In some embodiments, the one or more query
processor(s) 114 parse a query into multiple query terms
which are transformed by the one or more query processors
114 into a query expression (e.g., Boolean tree expression).
The query terms are used to index the tokenspace inverse
index 116 to retrieve token positions, as described more fully
with respect to FIG. 4. In some embodiments, the token
positions are used in a multi-stage query processing system
for scoring documents relevant to the query, as described
with respect to FIG. 5. In response to the query terms, the
query processors 114 generate an ordered list of documents

Feb. 16, 2006

which are presented to the user via one or more modes of
communication (e.g., display device, audio, etc.).

Lexicon Generator

[0025] FIG. 2 is a conceptual block diagram of an
embodiment of the lexicon generator 108 of FIG. 1. The
lexicon generator 108 includes a global-lexicon builder 202
and a mini-lexicon builder 204.

Global-Lexicon Builder

[0026] The global-lexicon builder 202 retrieves docu-
ments from the document repository 106 and generates a
global-lexicon 206 by assigning unique global token iden-
tifiers (GTokenIDs) to each unique token contained in the
documents. In some embodiments, the document repository
106 is logically or physically split into multiple portions,
sometimes called partitions, and a separate global-lexicon
206 1s generated for each partition. In one embodiment, a set
of several billion documents is divided into several thousand
partitions, each of which is processed to generate a global-
lexicon 206. A typical global-lexicon 206 can include a few
million unique tokens.

[0027] In some embodiments, the set of documents to be
encoded (e.g., the documents in one partition) are sorted in
accordance with one or more criteria prior to the parsing of
the documents into tokens and the processing of the tokens.
Such sorting of the documents can facilitate efficient encod-
ing of the tokenized documents, because documents that use
similar sets of words will be positioned near each other in
the set of documents. As a result, each mini-lexicon
(described below) will, on average, cover a larger portion of
the set of documents than would otherwise be the case, and
more generally, the encoding of the documents will occupy
less space. In one embodiment, the set of documents are first
sorted by language, and then the documents for each lan-
guage are sorted by URL, with the fields of the host name
portion of the URL being reversed in order. For example,
after the sorting by language, all the French documents will
be grouped together, and then the French documents will be
sorted by URL. When sorting by URL, each URL initially
comprises a pattern of h1.h2 . . . hyhz/nl/n2 . . . , where
h1.h2 ... hy.hz comprises the host name portion of the URL
and /n1/n2 represents the remainder of the URL. The URL
is remapped to the pattern hz.hy . . . h2.h1/nl/n2 . . . prior
to the sorting by URL. For example, the URL “www.google-
.com/about.html” is remapped to “com.google.www/
about.html”. By reversing the host name fields of the URLs
prior to sorting by URL, the documents are sorted in
accordance with their logical proximity to each other. Thus,
similar types of documents (within the group of documents
for a particular language) are grouped together; within the
group of documents for each document type, documents on
each web site are grouped together; within the documents
for each website, the documents for various branches of the
website are grouped together; and so on.

[0028] In some embodiments, the documents are ordered
using one or more clustering techniques. Terms, words or
phrases contained in documents can be used to organize the
documents into clusters that relate to various concepts. For
example, general information about the documents (e.g.,
meta-data embedded in or otherwise associated with the
identified documents), sampled content from the identified

US 2006/0036593 Al

documents, and/or category information about the docu-
ments can be used to order the documents.

[0029] In some embodiments, while parsing the docu-
ments the global lexicon builder 202 stores information (not
shown in FIG. 2) about each identified unique token, such
as the number of occurrences of each unique token in the set
of documents, and the language (if any) associated with the
unique token. The language associated with a unique token
may be determined based on the language associated with
the document(s) in which the token is found. When a
particular token is found in documents associated with more
than language, the language associated with the token may
be determined using any suitable methodology. One suitable
methodology is a statistical methodology that is used while
parsing the set of documents to identify unique tokens. Each
token is initially assigned to the language of the first
document in which it is found, and then for each subsequent
occurrence of the token that occurs in a document of a
language other than the current language assigned to the
token, the token is reassigned to the other language only if
a randomly (or pseudo-randomly) selected number between
0 and 1 is less than 1/N, where N is the current count of
occurrences of the token. In other embodiments, any similar
or otherwise suitable language assignment mechanism can
be used to associate a language with each unique token. In
some embodiments, a language is not associated with the
unique tokens representing punctuation symbols. In yet
another embodiment, while a language may be associated
with every unique token, the language association is ignored
when processing the N (e.g., 256) most frequently occurring
tokens. As a result, the language associated with punctuation
tokens is effectively ignored.

[0030] In some embodiments, the list of unique tokens,
and the associated frequency and language information, is
sorted based on frequency of occurrence of the unique
tokens. Optionally, the entries can then be further sorted to
facilitate space efficient encoding of the set of documents.
For instance, in one embodiment, all the unique tokens are
first sorted by frequency of occurrence. The resulting sorted
list of unique tokens is then divided into bands. For instance,
the top band, Band 0, may comprise the top 255 or 256
tokens (i.e., those with the highest frequency counts). The
second band, Band 1, may comprise the top 2'* (i.e., 65,536)
tokens, excluding the tokens in Band 0. The third band, Band
2, may comprise the next 2'* (i.e., 65,536) tokens in the
sorted list of unique tokens. Of course, the number of tokens
in each band may differ in other embodiments. Next, the
tokens in each band are sorted in accordance with a second
set of criteria. For instance, in one embodiment, the tokens
in the first band are sorted alphabetically, that is by numeric
or alphabetic value. Each of the other bands are sorted first
by language, and then alphabetically. As a result, the sorted
tokens in each band other than Band 0 are grouped by
language, and within each language group the tokens are
sorted alphabetically. In other embodiments, other sorting
criteria may be used for sorting the unique tokens in each of
the bands.

[0031] The sorting process produces a sorted list of the
unique tokens, each having a respective position in the list.
Each sorted unique token is then assigned a unique global
token identifier (hereinafter also referred to as “GTo-
kenID”). GTokenIDs can include any suitable data type and
width depending upon the platform used to implement the

Feb. 16, 2006

document processing system 102 (e.g., 32-bit unsigned
integers). In some embodiments, GTokenIDs are assigned to
the sorted unique tokens in increasing order, so that high-
frequency tokens are assigned small valued GTokenIDs and
low-frequency tokens are assigned large valued GTokenIDs.
To be more specific, in one embodiment, each token in the
sorted list of tokens is assigned a 32-bit global token
identifier equal to its numeric position in the sorted list of
unique tokens. Thus, the first token in the list is assigned a
GTokenID equal to 0 (i.e., 00000000 in hexadecimal for-
mat), the second token in the list is assigned a GTokenID
equal to 1, and so on. The resulting set of mappings of
GTokenIDs to unique token values is herein called the
global-lexicon 206. In some embodiments, the global lexi-
con 206 actually comprises two mapping structures, one
which maps GTokenlIDs to tokens, and another that maps
tokens to GTokenIDs. The mapping of tokens to GTokenIDs
is used during the encoding process, while the mapping of
GTokenlDs to tokens is used while decoding portions of the
documents.

[0032] Aswill be explained more fully below, ordering the
unique tokens based on frequency helps reduce the amount
of space required for storing the mini-lexicons 208. This is
true even in those embodiments in which bands of the
unique tokens are sorted based on criteria other than fre-
quency of occurrence, because the tokens in the bands
assigned to lower GTokenIDs have higher frequencies of
occurrence than the tokens in the bands assigned to higher
GTokenlIDs.

[0033] In some embodiments, “special” tokens that occur
more frequently than the average token, such as HTML tags
and punctuation, are assigned GTokenIDs which occupy a
prefix 205 portion of GTokenIDs in the global-lexicon 206
(e.g., GTokenIDy-GTokenIDy, ;). All other GTokenIDs can
be offset by the last special GTokenID allocated to the prefix
205.

[0034] In the above discussion, the GTokenIDs are
described as fixed length values, such as 32-bit unsigned
integer values. However, these same GTokenlIDs can also be
considered to be variable length identifiers, because when
the GTokenIDs are encoded for storage, the most significant
bytes (or bits) that are equal to zero may be truncated or
masked off during encoding. For instance, in some embodi-
ments, all GTokenIDs with a value of less than 2% are
encoded as a single byte value, all GTokenIDs with a value
of less than 2'° are encoded as a two-byte value, and all
GTokenIDs with a value of less than 2°* are encoded as a
three-byte value. In this way, the tokens having the highest
frequencies of occurrence in the set of documents are
represented by shorter length GTokenlIDs than the tokens
having lower frequencies of occurrence.

[0035] In the embodiments described below, the tokens-
pace repository is populated with fixed length LTokenIDs,
rather than the variable-length GTokenIDs. However, map-
ping the LTokenIDs in the tokenspace repository back to the
original tokens (which are also of variable length, of course)
requires the storage of a large number of “mini-lexicons”,
and the content of the mini-lexicons comprises GTokenIDs.
To efficiently store the mini-lexicons, the GTokenIDs in
each mini-lexicon may be treated as variable length values.
Alternately, the GTokenIDs in each mini-lexicon may be

US 2006/0036593 Al

treated as a list that is first delta encoded, and then the
resulting delta values are encoded using a variable length
encoding scheme.

Mini-Lexicon Builder

[0036] After the global-lexicon 206 is generated, a set of
mini-lexicons 208 are generated by the mini-lexicon builder
204 for use by the encoding/decoding system 110. Each
entry in a mini-lexicon 208 includes a GTokenID and a
corresponding local token identifier (L'TokenID). The LTo-
kenlD for each entry is implied by the position of the entry
in the mini-lexicon 208, and therefore does not need to be
explicitly stored. Each respective mini-lexicon 208 is used
only for encoding and decoding a distinct, respective spe-
cific range of token positions in the tokenized documents,
thus allowing the same set of LTokenIDs to be used by each
mini-lexicon 208. For example, a first mini-lexicon 208
(e.g., mini-lexicon A) having P (e.g., 256) entries is gener-
ated for the first P unique tokens encountered by the mini-
lexicon builder 204 as it parses through the documents. Once
the first P unique tokens have been encountered, a first entry
in a “valid range map”210 is made which includes the
starting token position, Start_POS ,, for the range of token
positions for which the first mini-lexicon 208 is valid. Each
of the P LTokenIDs in the first mini-lexicon 208 is assigned
to a unique GTokenID. When all of the LTokenIDs have
been assigned to GTokenlDs, a second mini-lexicon 208
(e.g., mini-lexicon B) is generated for the next P unique
tokens encountered by the mini-lexicon builder 204, and a
second entry is made in the valid range map 210 which
includes the starting token position, Start POSg, of the
range of positions for which the second mini-lexicon 208 is
valid. Thus, a token having a position in the tokenized
documents that falls within the range Start POSy to Start-
_Pos-1 can be decoded using mini-lexicon B, as shown in
FIG. 2.

[0037] To provide a concrete example, in one embodiment
the LTokenIDs in each mini-lexicon have values from 0 to
255, each represented by an 8-bit unsigned integer, while the
GTokenlIDs are 32-bit unsigned integers. A first mini-lexicon
is generated by scanning the set of documents, starting at
token position 0, until a predefined number P (e.g., 256) of
distinct tokens are identified. The GTokenIDs for the P
distinct tokens are assembled in a list. In some embodi-
ments, the GTokenIDs in the list are sorted by numeric
value, with the smallest GTokenIDs at the top of the list.
LTokenIDs are then assigned to the GTokenIDs in the list, in
accordance with the positions of the GTokenIDs in the list.
For instance, the first GTokenlID in the list is assigned an
LTokenID of 0, the next GTokenID in the list is assigned an
LTokenID of 1, and so on. The resulting mapping of LTo-
kenlIDs to GTokenlDs is called a mini-lexicon 208. A range
of token positions, from Start POS, to Start POSg, is
associated with the mini-lexicon. A second mini-lexicon is
generated by scanning the set of documents starting at the
position Start_Posy immediately following the last position
associated with the first mini-lexicon. The scanning contin-
ues until the predefined number P of distinct tokens are
identified, at which point a second mini-lexicon is generated
using the same process as described above. The mini-lexicon
builder 204 continues to generate a sequence of mini-
lexicons 208 for subsequent ranges of token positions in the
set of documents until all the tokens in the documents have
been mapped to mini-lexicons 208.

Feb. 16, 2006

[0038] In an alternate embodiment, the first F TTokenIDs
in each mini-lexicon 208 are reserved for the F most popular
tokens in the set of documents. For these F LTokenlIDs, the
LTokenID is always equal to the GTokenID. This assign-
ment scheme facilitates fast decoding of documents. When-
ever an LTokenID (in the tokenspace repository) having a
value of F-1 or less is decoded, it can be mapped to a token
directly in accordance with the global-lexicon without hav-
ing to first map the LTokenlID to a corresponding GTokenID.

[0039] The same set of LTokenIDs (e.g., 0 to 255) are used
in each mini-lexicon 208. To facilitate compression of the
documents, the LTokenIDs have a smaller width (e.g., 1
byte) than the GTokenIDs (e.g., 4 bytes). The difference of
these widths (e.g., 3 bytes) represents a reduction in the
number of bytes per token used to store the tokenized
documents in the tokenspace repository 112. In an embodi-
ment in which each LTokenID occupies one byte, a set of
documents having 1 billion tokens will occupy 1 billion
bytes (1 GB) in the tokenspace repository 112, ignoring the
space occupied by other supporting data structures (which
are described later in this document).

[0040] When the process of generating mini-lexicons 208
is complete, every token in the tokenized documents is
associated with a mini-lexicon 208 based on its position in
the tokenized documents. Note that each unique token in the
tokenized documents may be associated with more than one
mini-lexicon 208 if the token occurs in more than one
position range. In one embodiment, an average document
has approximately 1100 tokens and an average mini-lexicon
208 spans around 1000 tokens.

[0041] After each mini-lexicon 208 is generated, the
tokens in the corresponding portion of the set of documents
is mapped to LTokenIDs by the encoding/decoding system
110 and stored in the tokenspace repository 112 for subse-
quent retrieval. With this mapping, every token in the
document repository 106 is mapped to a fixed length (e.g.,
one byte) LTokenID in the tokenspace repository 112. Thus,
during decoding/decompression it is possible to jump from
one token position to another in the tokenspace repository
112 without the need of skip tables or equivalent data
structures, which can slow down the decoding process.

[0042] In some embodiments, the mini-lexicons 208 are
encoded in a compressed format and stored until needed for
document reconstruction. In one embodiment, the sorted list
of GTokenIDs in each mini-lexicon 208 is delta encoded,
and then the resulting list of delta values is encoded in a
compressed format, preferably in a format that facilitates
fast and efficient decoding and reconstruction of the mini-
lexicon. A suitable data structure and encoding/decoding
method are described in co-pending U.S. patent application
Ser. No. , (Morgan Lewis file 060963-5018-US),
entitled “System and Method For Encoding And Decoding
Variable-Length Data.”

[0043] To decompress a particular document, the mini-
lexicons 208 associated with the range of token positions for
that document are decompressed into translation tables or
mappings built from entries of the mini-lexicons 208 which
translate the LTokenIDs to their corresponding GTokenIDs.
Thus, decoding a tokenized document in the tokenspace
repository 112 is accomplished by reading the fixed-length
LTokenIDs stored in the tokenspace repository 112 for the
document, and accessing the mini-lexicon for each token

US 2006/0036593 Al

position in the document to translate the LTokenIDs into
corresponding GTokenIDs. The GTokenlDs are then
mapped into the corresponding tokens (e.g., text and punc-
tuation) using the global-lexicon 206, thereby reconstructing
all or a portion of the document.

Encoding System

[0044] FIG. 3A is a block diagram of an embodiment of
an encoding system 300 for encoding documents for a
tokenspace repository. The encoding system 300 includes an
optional preprocessor 302, an optional delta encoder 304
and a variable-length data encoder 306. Variable-length data
can include various data types, such as, without limitation,
integers, character strings, floating-point numbers, fixed-
point numbers and the like. The wvariable-length data
includes but is not limited to text, images, graphics, audio
samples and the like.

[0045] In some embodiments, a list of information is
received by the preprocessor 302 which orders the informa-
tion for efficient encoding. The preprocessor 302 may order
the data into a monotonic sequence using one or more
sorting algorithms. For example, if a set of integers are
sorted by value, then adjacent integers will be close in
magnitude, thus enabling the delta encoder 304 to generate
delta values that are small valued integers for encoding. The
ordered data is received by the delta encoder 304, which
computes differences between adjacent pairs of the ordered
data to obtain the small valued integers. The small valued
integers are received by the variable-length data encoder
306, which encodes the data into a compressed format which
can be efficiently decoded. One example of a suitable
variable-length data encoder 306 is described more fully in
co-pending co-pending U.S. patent application Ser. No.
, (Morgan Lewis file 060963-5018-US), entitled
“System and Method For Encoding And Decoding Variable-
Length Data.”

[0046] Various information generated by the document
processing system 102 can be encoded using all or part of
the encoding system 300. In some embodiments, the GTo-
kenIDs in each mini-lexicon 208 are sorted using the pre-
processor 302 to ensure that integer values closest in mag-
nitude will be delta encoded. The ordered GTokenIDs are
then delta encoded by the delta encoder 304 to provide
difference or residual values. The difference values are then
encoded in groups (e.g., groups of 4 values) into a com-
pressed format using the variable-length data encoder 306.
In some embodiments, lists of token positions in an inverse
index are similarly encoded to facilitate fast and efficient
decoding of the positions, as described more fully with
respect to FIG. 4.

[0047] While the variable-length data encoder 306 pro-
vides a compressed format that facilitates fast and efficient
decoding, other known encoding schemes can also be used
in the document processing system 102 to compress a list of
information (e.g., CCITT-G4, LZW etc.).

Decoding System

[0048] FIG. 3B is a block diagram of an embodiment of
a decoding system 308 for decoding documents in a tokens-
pace repository. The decoding system 308 includes a vari-
able-length data decoder 310 and an optional delta decoder
312. In some embodiments, encoded groups of data are

Feb. 16, 2006

received by the variable-length data decoder 310, which
decodes the groups with the assistance of one or more
offset/mask tables. The decoded data is received by the delta
decoder 312, which computes running sums, thereby pro-
ducing delta-decoded data, which is equivalent to the origi-
nal list of information. The use of offset/mask tables in
decoding group encoded variable-length integer values is
described more fully in co-pending U.S. patent application
Ser. No. (Morgan Lewis file 060963-5018-US) ,
entitled “System and Method For Encoding And Decoding
Variable-Length Data.”

Attribute Encoding/Decoding System

[0049] FIG. 3C is a block diagram of an embodiment of
an attribute encoding/decoding system 314 for encoding/
decoding document attributes. The attribute encoding/de-
coding system 314 includes an encoding/decoding system
320 which encodes attribute information 322 into attribute
records 318 for storage in an attribute table 316. The
attributes for a document are determined on a token-by-
token basis, with a 0 or 1 bit value being used to represent
the presence or absence of each attribute for a given token.
For instance an attribute record 318 in the attribute table may
be conceptually represented as an AxK bit map, where A is
the number of attributes that are encoded and K is the
number of tokens whose attributes are represented by the
record 318. If Ais 8 and K is 32, then each attribute record
318 stores eight attributes for each of 32 tokens. Each
attribute record 318 may be encoded so as to compress the
amount of space occupied by the attributes table while
enabling very fast decoding of selected attribute records
during query processing. One suitable methodology for
encoding and decoding the attribute records 318 is described
in co-pending U.S. patent application Ser. No.
(Morgan Lewis file 060963-5018-US), entitled “System and
Method For Encoding And Decoding Variable-Length
Data.” Alternately, the information in each attribute record
may be run-length encoded.

[0050] The set of attributes that are recorded in the
attribute table 316 can include one or more font attributes
(e.g., bold, underlined, etc.), one or more document position
attributes (e.g., title, heading), metadata and any other
features or characteristics that can be used to distinguish
between the tokens in a set of documents. In some embodi-
ments, the attributes of the tokens in a set of documents are
identified and encoded at the same time that the tokenized
documents are encoded and stored in the tokenspace reposi-
tory, as described above. The encoded attributes are used in
one or more stages of relevancy scoring, as described more
full with respect to FIG. 5.

Document Repository Encoding and Decoding
System—Second Embodiment

[0051] FIGS. 8A and 8B are block diagrams of an
embodiment in which a tokenized collection of documents
(a “tokenspace repository”) is encoded in a somewhat dif-
ferent way than the one described above. As described
above, a global lexicon builder 202 tokenizes the set of
documents 106, identifies all unique tokens, and assigns
global token identifiers to all the unique tokens. The result
is a global lexicon 206. Next, the set of documents (which
have been tokenized) are processed by a region lexicons
builder 804. Conceptually, the set of documents are divided

US 2006/0036593 Al

into regions 820, and each region 820 is divided into blocks
822. The region lexicons builder 804 builds a “lexicon” or
dictionary 830 for each region, and an encoding system 810
generates a set of encoded tokens 832 for each region, plus
a set of block offsets 834 for each region. The region lexicon
830, the encoded tokens 832 and the block offsets 834 (each
of which will be described in more detail next) together form
an encoded representation of a respective region 820 of the
set of documents.

[0052] Inoneembodiment, the set of documents is divided
into regions 820, each of which (except perhaps a last
region) has a predetermined, fixed size, such as 8192 tokens
(or any other appropriate size). Each block 822 of a region
820 also has a predefined, fixed size, such as 64 tokens (or
any other appropriate size).

[0053] In one embodiment, the “lexicon”830 for a respec-
tive region 820 is an ordered listing of the longest sequences
of tokens having the highest repeat rates, or any similar
structure. The lexicon 830 may be built by building a table
of candidate token strings in the region, determining their
repeat counts within the region, and then selecting the best
candidates until a maximum lexicon size is reached. In an
exemplary embodiment, the maximum lexicon size is 64
tokens, but any other appropriate size limit may be used in
other embodiments. As will be described next, the lexicon
830 is used as a context for encoding each of the blocks 8§22
of the respective region 820, enabling a highly compressed
representation of the region. In some embodiments, one or
more of the region lexicons 830 may be encoded in a
compressed format, for instance using the encoding method
described in U.S. patent application entitled “System and
Method For Encoding And Decoding Variable-Length
Data,” referenced earlier in this document.

[0054] Referring to FIGS. 9A and 9B, in one embodiment
the encoding system 810 encodes each block 822 of tokens
as follows. The lexicon 830 for the corresponding region is
treated as a set of tokens that immediately precede the tokens
of the block. In sequence, the tokens of the block are
processed from first to last, matching each token and as
many subsequent tokens as possible with the longest match-
ing token sequence in the preceding sequence of tokens,
including the lexicon 830. If a matching preceding sequence
is found, a “copy code” is generated. Otherwise a “literal
code” is generated to represent the token. All tokens covered
by the current code are then treated as preceding tokens for
subsequence processing of the next token (if any) in the
block. As shown in FIG. 9B, each “code” representing the
set of tokens in a block may include a type field 902. If the
code is a “literal code” the second portion 904 of the code
represents the global token identifier. In some embodiments,
this type field 902 indicates the number of bits required to
represent the global token identifier. For example, in one
embodiment, the type code 902 can indicate up to seven
distinct literal codes, each having a corresponding global
token identifier length. In other embodiments, the number of
distinct type codes may be more or less than eight (e.g., one
indicating a copy code and the rest indicating literal codes).
If the literal code is a “copy code” the second portion 906 of
the code may include a pointer 908 and a length 910, where
the pointer 908 indicates where in the preceding text to start,
and the length 910 indicates the length of the matching
sequence (i.e., the number of tokens to be copied during
decoding). Thus, if a matching sequence of, say, four tokens

Feb. 16, 2006

is found by the encoding system 810, beginning at a location
31 tokens preceding the current position, then the code for
this sequence would be:

[0055] <type=copy, ptr=31, length=4>.

[0056] The length of a copy code (as measured in bits) will
depend on the maximum token length of the region lexicon
830 and the maximum token length of the block, the
maximum allowed length of a matching sequence, and the
number of distinct codes. In one example, the type field 902
is 3 bits (allowing 8 type codes), the pointer field 908 is 7
bits and the length field 910 is 2 bits, for a total of 12 bits.
Other bit lengths for each field of a copy code may be used
in other embodiments. The length of each literal code (as
measured in bits) is specified by the type of the literal code.

[0057] Referring back to FIG. 8B, as the encoding system
810 encodes the blocks of a region, the encoding system 8§10
generates a set of block offsets 834 indicating the locations
of the encoded tokens for each block of the region. In one
embodiment, the block offset of the first block of the region
is a pointer into the token repository, and each of the other
block offsets for the region is a relative offset with respect
to the starting position of the first block in the region. In one
embodiment the region lexicons 830 and block offsets 834
are stored in a table or equivalent data structure that is
indexed in accordance with the starting positions of the
regions 820 divided by the fixed region size. From another
viewpoint, each region 820 is assigned a Region Number
comprising its starting position divided by the fixed region
size, and the data structure(s) in which the region lexicons
830 and block offsets 834 are stored are indexed by Region
Number.

[0058] Decoding a block 822 of a region 820 is accom-
plished by locating the region lexicon 830 of the correspond-
ing region, locating the encoded block using the block
offsets 834 for the region, and then decoding the set of the
codes for the block so as to produce a sequence of global
token identifiers. The resulting sequence of global token
identifiers, or any subset thereof, may then be converted into
a corresponding set of symbols or terms using the global
lexicon 206.

Query Processing System

[0059] FIG. 4 is a block diagram of an embodiment of the
first stage of a query processing system 104 for use with a
tokenspace repository. The query processing system 104
includes a global-lexicon 402, a tokenspace inverse index
408, a first stage look-up table 406 and a second stage
look-up table 410. Query terms or strings are received by the
global-lexicon 402 which translates query terms into GTo-
kenIDs using a translation table or mapping built from
entries of the global-lexicon 402. The GTokenIDs are
received by the inverse index 408, which includes a map 404
for mapping the GTokenIDs to index records 412 stored in
the inverse index 408. Each index record 412 identified
using the map 404 contains a list of token positions, which
directly correspond to token positions in the tokenspace
repository 112. In some embodiments, the inverse index 408
is generated after the global-lexicon is generated, and may
be generated during the same pass through the documents
that is used to generate the mini-lexicons.

[0060] In some embodiments, the inverse index 408 pro-
vides a list of positions which can be used as an index into

US 2006/0036593 Al

the first stage look-up table 406. When the query contains
multiple terms, multiple lists of positions are produced by
the inverse index 408. To avoid having to search the entire
DocID map 410 for an entry corresponding to each position
in the list(s) of positions, the first stage look-up table 406 has
one entry for each block of positions in the tokenspace
repository. For example, each block may have a size of
32,768 positions, and each entry may have a pointer to a first
entry in the DoclD lookup table 410 for the corresponding
block of positions. Thus, the first stage look-up table 406
translates the list(s) of positions into starting point positions
for document identifier (DocID) entries 412 in the second
stage look-up table 410, which is sometimes called the
DoclD table 410. Alternately, tables 406 and 410 may be
jointly called the DocID lookup table. Each entry 412 in the
second stage look-up table 410 includes a DocID (document
identifier) and a starting repository position for the corre-
sponding document. The last token in any document is the
position immediately prior to the starting position identified
by the next entry 412 in the second stage look-up table. The
starting point positions Start POS, , for DocIDs are
received by the second look-up table 410 which translates
the starting point positions into a list of DocIDs for each of
the query terms.

[0061] Insome embodiments, the first stage query proces-
sor includes logic 416 for producing a result set. The lists of
DoclDs are merged by logic 416, in accordance with the
Boolean logic specified by the query or query tree, to form
a result set of DocIDs. The logic 416 may also optionally
filter the lists of token positions to eliminate token positions
not located within the documents corresponding to the
DoclDs in the result set. Furthermore, a scoring function
may be applied to the result set, using the DocIDs and token
positions within each document identified by the DocIDs so
as to associate a score (sometimes called a query score) with
each DoclD in the result set.

Multi-Stage Query Processing

[0062] FIG. 5 is a block diagram of an embodiment of a
multi-stage query processing system 500 for use with a
tokenspace repository 524. In some embodiments, the query
processing system 500 includes four stages of query pro-
cessing and relevancy score generation, including a first
stage query processor 510, a second stage query processor
514, a third stage query processor 518 and a fourth stage
query processor 520. Note that more or fewer query pro-
cessor stages can be used in the system 500 depending upon
the application. Each stage calculates one or more sets of
relevancy scores which can be returned to the user and/or
combined with relevancy scores generated in previous
stages, depending upon the application.

Query Processing—Stage [

[0063] The first stage query processor 510 was generally
described with respect to FIG. 4. A query string 502 is
tokenized and parsed by a query parser 504 into query terms
(ie., each distinct term in the query is treated as a token).
The tokenized query terms are translated by the global-
lexicon 508 to corresponding GTokenlDs using a translation
table or mapping, as previously described with respect to
FIGS. 2 and 4. Since users may employ special operators in
their query string, including Boolean, adjacency, or prox-
imity operators, the system 500 parses the query into query

Feb. 16, 2006

terms and operators. These operators may occur in the form
of reserved punctuation (e.g., quotation marks) or reserved
terms in a specialized format (e.g., AND, OR). In the case
of a natural language processing (NLP) system, operators
can be recognized implicitly in the language used no matter
how the operators might be expressed (e.g., prepositions,
conjunctions, ordering, etc.). Other query processing may
also be included in the first stage query processor 510, such
as deleting stop words (e.g., “a”, “the”, etc.) and term
stemming (i.e., removing word suffixes).

[0064] Next, the list of GTokenIDs are processed by a
query expander 506, which generates a query tree or other
query representation that takes into account any operators
used in the query string (e.g., a Boolean expression). Option-
ally, the query expander 506 may also expand the query in
various ways. For instance, a query term may be converted
into a subtree containing the term and one or more synonym
terms or other terms related to the query term, with the terms
in the subtree being related to each other by an OR operator
or parent node.

[0065] As will be described in more detail below, in some
embodiments a query is processed one or more times by the
sequence of query processing stages shown in FIG. 5. On
each pass (other than the last), additional query expansion
terms are generated (as will be explained below), and then
these additional terms are added to the query tree. The query
tree can also be used as a scoring tree, with weights being
associated with terms in the query tree. The expanded query
tree can also include supplemental terms and subtrees of
terms that are not required to be present in documents
responsive to the query, but which are used in scoring the
relevance of documents responsive to the query. If there is
more than one query term, during the first pass weights may
be computed for the query terms to improve the search
results.

[0066] In some embodiments, the first pass through the
system 500 processes a random sample of documents from
a document corpus. The size of the random sample can be
selected based on one or more smaller random samples that
can be used by the system 500 to estimate a number of
documents that match the query across the document corpus.
In other embodiments, a first document corpus (e.g., a set of
query sessions) is used in the first pass through the system
500 and a second, different corpus is used in a second or
subsequent pass through the system 500. Using previous sets
of query sessions enables the system 500 to determine other
related terms that commonly co-occur in similar queries.
These related terms can be used by the query expander 506
to expand the query for subsequent passes.

[0067] The first stage query processor 510 uses the query
terms to search against a tokenspace inverted index 512 and
to identify documents matching the query. The first stage
query processor 510 accesses the inverse index 512 to
produce a list of token positions (also called tokenspace
repository positions) for terms in the query tree and accesses
the DocID Map 516 to produce a set of DoclDs for the
documents corresponding to the token positions. In addition,
the first stage processor 510 performs the Boolean logic
specified by the query or query tree so as to generate a set
of DoclIDs that are responsive to the query. In some embodi-
ments, the first stage query processor 510 also computes a
first set of relevancy scores S; between the query and each

US 2006/0036593 Al

document based on one or more scoring algorithms. In
general, scoring algorithms provide relevancy rankings for
each matching document based on one or more query
features, including but not limited to, the presence or
absence of query term(s), term frequency, Boolean logic
fulfillment, query term weights, popularity of the documents
(e.g., a query independent score of the document’s impor-
tance or popularity or interconnectedness), proximity of the
query terms to each other, context, attributes, etc. In one
embodiment, the first set of relevancy scores S, are based on
a set of factors that include presence of query terms, term
frequency and document popularity.

[0068] In some embodiments, the first set of relevancy
scores S; can be used to select documents for presentation as
an ordered list to the user, who can then simply click and
follow internal pointers to the selected document. In other
embodiments, the first set of relevancy scores S;, together
with DocIDs and corresponding positions, are provided to
the second stage query processor 514 for further processing.

Query Processing—Stage 11

[0069] The second stage query processor 514 receives a
set of DoclDs, a list of tokenspace repository positions for
the corresponding documents, and a first set of relevancy
scores S; from the first stage query processor 510. The
second stage query processor 514 uses the list of positions
to generate a second set of relevancy scores S, based on the
proximity or relative positions of query terms found in the
documents. When the terms in a query occur near to each
other within a document, it is more likely that the document
is relevant to the query than if the terms occur at greater
distance. Thus, the second set of relevancy scores S, are
used to rank documents higher if the query terms occur
adjacent to one another or in close proximity, as compared
to documents in which the terms occur at a distance. In some
embodiments, the second set of relevancy scores S, can be
used to select the top X documents for presentation as an
ordered list to the user, who can then simply click and follow
internal pointers to the selected document. In some embodi-
ments, the second set of relevancy scores S, is derived in
part from the first set of relevancy scores S; (e.g., by
adjusting the S, scores in accordance with the additional
scoring factors used by the second stage query processor
514) to generate an ordered list of documents (ordered in
accordance with the second set of relevancy scores S,) for
presentation to the user, and/or for further processing by the
third stage query processor 518.

Query Processing—Stage 111

[0070] In some embodiments, the second stage query
processor 514 is coupled to a third stage query processor 518
for handling term attributes (e.g., font attributes, title, head-
ings, metadata, etc.) which have been encoded in an attribute
table 522, as previously described with respect to FIG. 3C.
The third stage query processor 518 receives a set of
DoclDs, a list of tokenspace repository positions for the
corresponding documents, and the second set of relevancy
scores S, from the second stage query processor 514. Alter-
nately, the third stage query processor receives the first set
of relevancy scores S, as well as the second set of relevancy
scores S,.

[0071] Some studies show that the location of a term in a
document indicates its significance to the document. For

Feb. 16, 2006

example, terms occurring in the title of a document that
match a query term may be weighted more heavily than
query terms occurring in the body of the document. Simi-
larly, query terms occurring in section headings or the first
paragraph of a document are likely to be more indicative of
the document’s relevancy to the query than terms occurring
in less prominent positions within the document. Other
attributes that may be used as indicators of relevancy include
bolded text, underlined text and font size. Thus, the third set
of scores S; are determined using the attributes of tokens in
the documents that match the query terms. Referring to FIG.
3C, to access the attributes for the query terms in a document
(i.e., the attributes of the tokens matching or relevant to the
query terms), the token positions of the query terms in the
document are used to index into the attribute table 316 (522
in FIG. 5). More specifically, if the number of tokens whose
attributes are encoded by each attribute record 318 is K, then
the token positions divided by K are used to index into the
attribute table 316. In some embodiments, the identified
attribute record or records 318 are stored in an encoded,
compressed form, and thus must be decoded in order to
determine the attributes associated with each of the query
terms.

[0072] In some embodiments, the third set of relevancy
scores S; can be used to select the top Y documents for
presentation as an ordered list to the user, who can then
simply click and follow internal pointers to the selected
document. In some embodiments, the third set of relevancy
scores S is derived in part from one or more of the first and
second sets of relevancy scores S; and S,, to generate an
ordered list of documents for presentation to the user, and/or
for further processing by the fourth stage query processor
520. In one embodiment, the S; scores are produced by
adjusting the S, scores in accordance with the additional
scoring factors produced by the third stage query processor
518.

Query Processing—Stage IV

[0073] The fourth stage query processor 520 receives a set
of DoclDs, a list of positions in the documents correspond-
ing to the DoclDs, and the third set of relevancy scores S,
from the third stage query processor 518. The fourth stage
query processor 520 may optionally receive the first and/or
second sets of relevancy scores S, and S, as well. The fourth
stage query processor 520 is coupled to a decoding system
527, which in turn is coupled to one or more mini-lexicon
maps 523, a tokenspace repository 524 and one or more
global-lexicon maps 508. The mini-lexicon maps 523,
tokenspace repository 524 and global lexicon maps 508
were all previously described with respect to FIGS. 1 and
2.

[0074] The fourth stage query processor 520 generates a
fourth set of relevancy scores S, based on context, and may
also generate a “snippet” for one or more of the documents
listed in the result set. Snippets are small portions of text
from a document, and typically include text that appears
around the keywords being searched. In one embodiment, to
generate a snippet for a document listed in the result set, the
query processor decodes a predefined number of tokens
positioned before and after the first occurrence of each query
term present in the document, thereby reconstructing one or
more text portions of the document, and then selects a subset
of the text portions to include in the snippet. Using the list

US 2006/0036593 Al

of positions in the result set, the decoding system 527 can
select the mini-lexicons 523 that are needed to decode the
portions of a document that precede and follow the occur-
rences of the query terms in the document. The selected
mini-lexicons 523 and the global-lexicon 508 are used to
translate LTokenIDs in the tokenspace repository into GTo-
kenlDs, and to then translate the GTokenlIDs into tokens, as
described above with respect to FIG. 2.

[0075] In some embodiments, the fourth set of relevancy
scores S, can be used to select the top Z documents for
presentation as an ordered list to the user, who can then
simply click and follow internal pointers to the selected
document. In some embodiments, the fourth set of relevancy
scores S, is derived in part from one or more of the first,
second and third sets of relevancy scores S;, S, and S;, to
generate an ordered list of documents for presentation to the
user, and/or for further processing by a relevance feedback
module 517. In an alternate embodiment, the last stage query
processor generates snippets for the documents having the
highest scores in the relevancy scores produced by the
preceding query processor stage, but does not generate a
new set of relevancy scores S,,.

[0076] In some embodiments, the final set of relevancy
scores are provided to a relevance feedback module 517
which generates one or more new query expansion terms
based on documents in the result set produced by the last
query stage. For example, the relevance feedback module
517 could implement one or more known relevance feed-
back algorithms, including but not limited to, pseudo-rel-
evance feedback algorithms based on a full document
approach (pseudo relevance feedback based on a whole web
page), Document Object Model (DOM) segmentation,
Vision-based Page Segmentation (VIPS), conceptual rel-
evance feedback using concept lattices, etc. The relevance
feedback algorithms can analyze the documents vetted from
the previous query processing stages and generate query
expansion terms based the results of the analysis. The new
query expansion terms are provided to the query expander
506 which generates a new query expression to be processed
by one or more of the query processors 510, 514, 518 and
520. Thus, the multi-stage query processing system 500 is
capable of executing two or more passes on a query, and
using information from each pass to generate improved
queries which will ultimately result in the user receiving
more relevant documents.

[0077] In one embodiment, the last query stage processor
520 produces long snippets when performing the first pass
processing of a query, for example including N (e.g., 10 to
40) tokens preceding and following each occurrence of the
query terms in a document. The snippet may be truncated if
it exceeds a predefined length. The query and the long
snippets produced by the last query stage 520 are provided
to the relevance feedback module 517, along with the
relevance scores, so as to generate a set of query expansion
terms, and, optionally, a set of query term weights as well.
During a second pass processing of the expanded query, the
last query stage 520 produces short snippets, suitable in
length and content for display with the list of documents in
the result set having the highest or best scores.

[0078] In one embodiment, the query processing system
contains L parallel query processing sub-systems, each of
which contains an inverse index 512 and a tokenspace

Feb. 16, 2006

repository 524 for a respective subset of a collection of
documents. For instance, a query processing system may
include over a thousand parallel query processing sub-
systems. The relevance feedback module 517 (FIG. 5) may
be shared by all the query processing sub-systems. During a
first pass through the query processing system, the query is
processed by a small portion of the parallel query processing
sub-systems, while during a second pass the query is pro-
cessed by the entire query processing system. For instance,
the query processing system may be divided into S subsets
(e.g., 32 subsets), and each query is assigned to one of the
subsets in accordance with the result of applying a hash
function to a normalized version of the query, and then
applying a modulo function to the result produced by the
hash function. Each subset of the query processing system
may be called a “partition” of the query processing system,
and each query processing sub-system may be called a
“sub-partition”.

[0079] The main purpose of the first pass processing of the
query is to produce a set of query expansion terms, and
query term weights, so as to improve the quality of the query
results produced by the second pass processing of the query.
As long as the documents in the query processing system are
fairly randomly distributed across the query processing
sub-systems, the query needs to be processed by only a small
number of sub-systems to produce a set of query expansion
terms. The query expansion terms are used by the query
expander 506 to produce an expanded query tree or query
expression, which is then processed by the query processing
stages (in a second pass processing of the query) as
described above. For example, the query “new york pic-
tures” might be expanded to “new york (pictures or images
or image or picture).” The result set and snippets produced
by the last query stage during the second pass may be
formatted for display (or, more generally, presentation) by
the computer or device from which the query was received.

[0080] In one embodiment, the first pass processing of the
query is performed on a different database than the subse-
quent passes. For instance, the initial database for the first
pass may be a database of previously processed queries,
while the database used for the subsequence passes may be
a set of documents having an inverse index for mapping
query terms to documents in the database.

Document Processing Server

[0081] FIG. 6 is a block diagram of an embodiment of a
tokenspace repository server 600. The server 600 can be a
stand alone computer system or part of a distributed pro-
cessing system including multiple computer systems. The
server 600 generally includes one or more processing units
(CPUs) 604, one or more network or other communications
interfaces 608, memory 602, and one or more communica-
tion buses 606 for interconnecting these components. The
server 600 may optionally include a user interface, for
instance a display and a keyboard. Memory 602 may include
high speed random access memory and may also include
non-volatile memory, such as one or more magnetic disk
storage devices. Memory 602 may include mass storage that
is remotely located from the central processing unit(s) 604.

[0082] The memory 602 stores an operating system 610
(e.g., Linux or Unix), a network communication module
612, a lexicon generator 614 (e.g., the lexicon generator

US 2006/0036593 Al

108), an encoding system 616 (e.g., encoding system 300),
one or more global-lexicons 618 (e.g., global-lexicon 206),
one or more mini-lexicons 620 (e.g., mini-lexicons 208), a
tokenspace repository 622 (e.g., tokenspace repository 112),
attribute records 624 (e.g., attribute records table 316), and
a validity range map 626 (e.g., validity range map 210). The
operation of each of these components has been previously
described with respect to FIGS. 1-5.

Query Processing Server

[0083] FIG. 7 is a block diagram of an embodiment of a
query processing server 700. The server 700 can be a stand
alone computer system or part of a distributed processing
system including multiple computer systems. The server 700
generally includes one or more processing units (CPUs) 704,
one or more network or other communications interfaces
708, memory 702, and one or more communication buses
706 for interconnecting these components. The server 700
may optionally include a user interface, for instance a
display and a keyboard. Memory 702 may include high
speed random access memory and may also include non-
volatile memory, such as one or more magnetic disk storage
devices. Memory 702 may include mass storage that is
remotely located from the central processing unit(s) 704.

[0084] The memory 702 stores an operating system 710
(e.g., Linux or Unix), a network communication module
712, a tokenspace inverse index 714 (e.g., tokenspace
inverse index 408), a decoding system 716 (e.g., a decoding
system 308), one or more lexicon translation tables or
mappings 718 (e.g., derived from global-lexicon 206 and
mini-lexicons 208), a validity range map 720 (e.g., validity
range map 210), a DocID map 722 (e.g., DocID map 410),
a query parser 724 (e.g., query parser 504), query tree 726,
one or more query processors 728 (e.g., query processors
510, 514, 518 and 520), attribute records 730 (e.g., attribute
records table 316), and a tokenspace repository 732 (e.g.,
tokenspace repository 112). The operation of each of these
components has been previously described with respect to
FIGS. 1-5.

[0085] The foregoing description, for purpose of explana-
tion, has been described with reference to specific embodi-
ments. However, the illustrative discussions above are not
intended to be exhaustive or to limit the invention to the
precise forms disclosed. Many modifications and variations
are possible in view of the above teachings. The embodi-
ments were chosen and described in order to best explain the
principles of the invention and its practical applications, to
thereby enable others skilled in the art to best utilize the
invention and various embodiments with various modifica-
tions as are suited to the particular use contemplated.

What is claimed is:
1. A method of processing a query in a multi-stage query
processing system, comprising:

retrieving a first set of document identifiers from an index
in response to one or more query terms;

generating a first set of relevancy scores for a set of
compressed documents corresponding to at least a
subset of the first set of document identifiers;

decompressing at least a portion of the set of compressed
documents to recover a first set of tokens, wherein the
first set of recovered tokens are associated with posi-

Feb. 16, 2006

tions in the set of compressed documents correspond-
ing to the first set of document identifiers; and

generating additional query terms from the first set of
recovered set of tokens;

formulating a new query using the additional query terms;
and

processing the new query to retrieve a second set of
document identifiers from the index and to generate a
second set of relevancy scores based at least in part on
the additional query terms.

2. The method of claim 1, further comprising:

decompressing at least a portion of the set of compressed
documents to recover a second set of tokens, wherein
the second set of recovered tokens are associated with
positions in the set of compressed documents corre-
sponding to the second set of document identifiers; and

reconstructing one or more portions of the set of com-
pressed documents using the second set of recovered
tokens.

3. The method of claim 1, further comprising:

presenting the reconstructed portions to a user with an
ordered list of documents selected from the set of
compressed documents based at least in part on the
second set of relevancy scores.

4. The method of claim 1, wherein the second set of
relevancy scores are based on one or more positions of the
query terms in the set of compressed documents correspond-
ing to the second set of document identifiers.

5. The method of claim 1, wherein the second set of
relevancy scores are based on distances between query terms
in the set of compressed documents corresponding to the
second set of document identifiers.

6. The method of claim 3, wherein the second set of
relevancy scores are based on a context in which a query
term is used in the set of compressed documents correspond-
ing to the second set of document identifiers.

7. A method of processing a query in a multi-stage query
processing system, comprising:

retrieving a first set of information in response to one or
more query terms;

generating at least one additional query term based on the
first set of information;

formulating a new query using the at least one additional
query term, the new query having a plurality of query
terms; and

processing the new query to retrieve a set of document
identifiers from an index;

generating a set of relevancy scores for a set of com-
pressed documents corresponding to at least a subset of
the set of document identifiers;

decompressing at least a portion of the set of compressed
documents to recover a set of tokens, wherein the set of
recovered tokens are associated with positions of one or
more query terms of the plurality of query terms in the
set of compressed documents corresponding to the set
of document identifiers; and

US 2006/0036593 Al
11

generating a list of documents based on at least a portion
of the set of document identifiers, the list including
information corresponding to at least a portion of the
set of recovered tokens.

8. A computer-readable medium having stored thereon
instructions which, when executed by a processor in a
multi-stage query processing system, causes the processor to
perform the operations of:

retrieving a first set of document identifiers from an index
in response to one or more query terms;

generating a first set of relevancy scores for a set of
compressed documents corresponding to at least a
subset of the first set of document identifiers;

decompressing at least a portion of the set of compressed
documents to recover a first set of tokens, wherein the
first set of recovered tokens are associated with posi-
tions in the set of compressed documents correspond-
ing to the first set of document identifiers; and

generating additional query terms from the first set of
recovered set of tokens;

formulating a new query using the additional query terms;
and

processing the new query to retrieve a second set of
document identifiers from the index and to generate a

Feb. 16, 2006

second set of relevancy scores based at least in part on
the additional query terms.
9. A multi-stage query processing system, comprising:

means for retrieving a first set of document identifiers
from an index in response to one or more query terms;

means for generating a first set of relevancy scores for a
set of compressed documents corresponding to at least
a subset of the first set of document identifiers;

means for decompressing at least a portion of the set of
compressed documents to recover a first set of tokens,
wherein the first set of recovered tokens are associated
with positions in the set of compressed documents
corresponding to the first set of document identifiers;
and

means for generating additional query terms from the first
set of recovered set of tokens;

means for formulating a new query using the additional
query terms; and

means for processing the new query to retrieve a second
set of document identifiers from the index and to
generate a second set of relevancy scores based at least
in part on the additional query terms.

