[N
a9 United States

a2 Patent Application Publica
Deng et al.

US 20050246588A1

tion (10) Pub. No.: US 2005/0246588 Al
43) Pub. Date: Nov. 3, 2005

(54) PROFILE BASED CAPTURE COMPONENT

(75) Inventors: Jian Gong Deng, Foster City, CA (US);
Stephen Lawrence, Mountain Veiw,
CA (US); Christopher M. Prince,
Mountain View, CA (US); Mihai Florin
Tonescu, Mountain View, CA (US)

Correspondence Address:

FENWICK & WEST LLP

SILICON VALLEY CENTER

801 CALIFORNIA STREET

MOUNTAIN VIEW, CA 94041 (US)
(73) Assignee: GOOGLE, INC., Mountain View, CA
(21) Appl. No.: 11/051,317
(22) Filed: Feb. 4, 2005

Related U.S. Application Data

(63) Continuation-in-part of application No. 10/814,773,
filed on Mar. 31, 2004.

"2

.i._..

Publication Classification

(51) Int. CL7 oo GOGF 11/00
(52) US.ClL oo 714/38
(7) ABSTRACT

An indexing system in a computer system may include
applications, a capture processor, a queue, a search engine,
and a display processor. The indexing system captures
events of user interactions with the applications. Events are
queued and if indexable, indexed and stored for user access
through the search engine. Capture components in the cap-
ture processor can include a keyboard capture component
that processes user keystrokes to determine events. A display
capture component captures event data from windows asso-
ciated with the applications. Display event data can be
captured on a polling schedule or based on state changes of
window elements. To determine target applications and
window applications of interest application profiles and
window profiles can be used.

/100

CUENT 102a
Ipaocsssm 1E| \
RVER DEVIC
_ MEMORY 108 SERVER DEVICE 150
1i2a PROCESSOR 160
E—— EGUENT APPLICATIONS uol MEMORY 162
‘ NETWORK SEARCH 170
‘EA‘PTURE PROCESSOR 124 [| ENGINE
!QUEUE 12;]
] k3
SEARCH ENGINE 122
[moExer 130}
[Query svsTen 132
| FORMATTER 134 }

{

A I DISPLAY PROCESECR

!25—[

3

4

140
DATA STORE

144 148
DATABASE REPOSITORY

Patent Application Publication Nov. 3, 2005 Sheet 1 of 5 US 2005/0246588 A1

/100

120 10Zb

“f‘ —*! CLIENT

CUENT 10Za
PROCESSOR 110
N ——— _SERVERDEVICE _ 150
112a , | PrROCESSOR 160
» | | [OUENT APPLICATIONS 120 T
; ¥ | NETWORK SEARCH 170
(CAPTURE PROCESSOR 124 | ENGINE
QUEUVE 126
¥
SEARCH ENGINE 122
[woexer 7]
[Query svsTen 132
| FORMATTER 134 |

F Y
L 4

DISPLAY PROCESSOR 128

L3

y

140
DATA STORE
142 144 146
INDEX ‘I DATABASE REPOSITORY F i G . 1

Patent Application Publication Nov. 3, 2005 Sheet 2 of 5 US 2005/0246588 A1

200
202 \ /

CAPTURE EVENT

AN l
DETERMINE IF

INDEXABLE EVENT

SN l

QUEUE EVENT

200 1

INBEX AND STORE
EVENT

FIG. 2

Patent Application Publication Nov. 3, 2005 Sheet 3 of 5

INFOCUS

7 APPLICATION

CHANGED? -

US 2005/0246588 A1
: ‘f,,fanz
PROVIDE KEYSTROKE
DATABASE
L ‘ 3{}3 202
CALL KEYSTROKE ‘/ v
GAPTURE CORMPONENT
DETERMINE APPLICATION |~
IN FOCUS
' 308
RESET EVENT -~
NG
- N e
RECEIVE KEYSTROKE
L 310
PROGESS KEYSTROKE
ADD PROCESSED |~ 912

KEYSTROKE TC EVENT

_AND CAPTURE STATE

314

NGO

N+

NC

FIG. 3

COMPILE EVENT .

Patent Application Publication Nov. 3, 2005 Sheet 4 of 5

CALL DISBLAY CAPTURE
COMPONENT

US 2005/0246588 Al

202
w/’

I

 DETERMINE APPLICATION

IN FQCUS

1

RESET EVENT

!

RECEIVE DISPLAY CALL

AND UPDATE cwrum"

STATE

410

COMPLETE

EVENT?

COMPILE EVENT

FIG. 4

Patent Application Publication Nov. 3, 2005 Sheet 5 of 5

501-\

US 2005/0246588 Al

'/ 500

APPLICATION PROFILE

CHECK APPLICATION BASED ON TARGET |

502—\ ‘ l

ASSOCIATE DISPLAY CAPTURE
50

COMPONENT CODE INTO APPLICATION

!

TARGET WINDOW PROFILES

COMPARE APPLICATION WINDOW WITH

!

P 506

FOR CHANGES

MONITOR DISPLAY ELEMENT STATES

!

/‘I 508

CAPTURE WINDOW EVENT DATA

TARGET WINDOW
TERMINATED?

NO

510

512

COMPLETE EVENT

FIG. 5

US 2005/0246588 Al

PROFILE BASED CAPTURE COMPONENT

RELATED APPLICATIONS

[0001] This application is a continuation in part (“CIP”) of
and claims priority from U.S. application Ser. No. 10/814,
773, titled “Methods and Systems for Information Capture”
and filed on Mar. 31, 2004 by Lawrence et al.

FIELD OF THE INVENTION

[0002] The invention generally relates to search engines.
More particularly, the invention relates to methods and
systems for information capture.

BACKGROUND OF THE INVENTION

[0003] Users genecrate and access a large number of
articles, such as emails, web pages, word processing docu-
ments, spreadsheet documents, instant messenger messages,
presentation documents, multimedia files, and the like using
a client device, such as a personal computer, personal digital
assistant, mobile phone or the like. Some articles are stored
on one or more storage devices coupled to, accessible by, or
otherwise associated with the client device(s). Users some-
times wish to search the storage device(s) for articles.

[0004] Conventional client-device search applications sig-
nificantly degrade the performance of the client device. For
example, certain conventional client-device search applica-
tions typically use batch processing to index all articles,
which results in noticeably slower performance of the client
device during the batch indexing. Additionally, batch pro-
cessing occurs only periodically. Therefore, when a user
performs a search, the most recently accesses or created
articles are sometimes not included in the results. Moreover,
if the batch indexing is scheduled for a time when the client
device is not turned on, it may not take place for an extended
period of time. In that case, the index of articles associated
with the client device can become significantly outdated.
Conventional client-device search applications can also
need to rebuild the index at each batch indexing or build new
partial indexes and perform a merge operation that can use
a lot of client-device resources.

[0005] Conventional client-device search applications
also sometimes use a great deal of system resources when
operational, resulting in slower performance of the client
device.

[0006] Additionally, conventional client-device search
applications generally require the user to explicitly provide
a search query to the search application to generate results,
and may be limited to examining file names or the contents
of a particular application’s files.

SUMMARY OF THE INVENTION

[0007] A computer based method for capturing event data
from a target window of a target application in a computer
system includes comparing window information with a
target window profile that is associated with the target
window of the target application and capturing event data
from the target window upon detecting a state change of a
state associated with an element in the window. Embodi-
ments of the present invention include methods, systems,
and computer-readable media for information capture, stor-
age, and indexing.

Nov. 3, 2005

[0008] In one embodiment, a method for capturing event
data from a target window of a target application in a
computer system additionally includes receiving window
creation information from an application and determining
whether the application is an instance of the target applica-
tion. In one embodiment, to make this determination the
window creation information is compared with a target
application profile, which is associated with the target appli-
cation.

[0009] In another embodiment, a computer based method
for indexing events in a computer system includes receiving
captured event data from a target window. The target win-
dow is associated with a target application. The method also
includes determining an event based on the target applica-
tion and also based on user input. In this embodiment, the
method also includes determining whether to index the
captured event data and storing the event.

[0010] Another aspect of the invention provides a com-
puter-based method for determining indexing events by
receiving a plurality of display calls. The display calls are
associated with computer applications in the computer sys-
tem. The method includes processing the plurality of display
calls to determine a target window. The processing is based
on target window profiles. The method also includes deter-
mining an event based, at least in part, on data captured from
the target window.

[0011] In yet another embodiment, the invention provides
a method that compares application related data with stored
target application profiles associated with a plurality of
target applications. The application related data is from
applications associated with windows executing in a com-
puter system. The method also includes subscribing to
window creation events through the operating system of the
computer system. Window creation request information is
received from an application. The window creation request
information is compared with the stored target application
profiles. Then establishing hooks into processes for each
target application. Window element information for each
process of each target application is compared with a plu-
rality of stored target window profiles associated with target
windows of the target applications. The method also
includes monitoring state changes for states associated with
display elements in windows matching a target window
profile. In this embodiment, the method includes capturing
from each matched window event data upon detecting a state
change of the monitored states. The event data is captured
into an event associated with each matched window. This
capturing includes modifying application behavior of the
matched applications based on the capture component code.
The method also includes completing the events associated
with the matched windows in response to closure of the
matched window.

[0012] The features and advantages described in the speci-
fication are not all inclusive and, in particular, many addi-
tional features and advantages will be apparent to one of
ordinary skill in the art in view of the drawings, specifica-
tion, and claims. Moreover, it should be noted that the
language used in the specification has been principally
selected for readability and instructional purposes, and may
not have been selected to delineate or circumscribe the
inventive subject matter.

US 2005/0246588 Al

BRIEF DESCRIPTION OF THE DRAWINGS

[0013] FIG. 1 is a diagram illustrating an exemplary
environment in which one embodiment of the present inven-
tion may operate.

[0014] FIG. 2 is a flow diagram illustrating an exemplary
embodiment of a method for capturing and processing event
data associated with a client device.

[0015] FIG. 3 is a flow diagram illustrating an exemplary
embodiment of a method for capturing keystroke informa-
tion on a client device.

[0016] FIG. 4 is a flow diagram illustrating an exemplary
embodiment of a method for capturing display information
on a client device.

[0017] FIG. 5 is a flow diagram of one embodiment of a
profile based display capture method.

[0018] The figures and the following description relate to
preferred embodiments of the present invention by way of
illustration only. It should be noted that from the following
discussion, alternative embodiments of the structures and
methods disclosed herein will be readily recognized as
viable alternatives that may be employed without departing
from the principles of the claimed invention.

DETAILED DESCRIPTION OF SPECIFIC
EMBODIMENTS

[0019] Referring now to the drawings in which like
numerals indicate like elements throughout the several fig-
ures, FIG. 1 shows a diagram illustrating an exemplary
environment in which one embodiment of the present inven-
tion may operate. While the environment shown in FIG. 1
reflects one client-side search engine architecture embodi-
ment, other client-side or server-side embodiments are pos-
sible. The system 100 includes multiple client devices
102a-n that can communicate with a server device 150 over
a network 106, e.g., the Internet. In other embodiments,
other networks, such as an intranet home local area network
(“LAN™), or the like, may be used instead. Moreover, in
other embodiments, functions described with respect to a
client or a server in a distributed network environment may
take place within a single client device without a server
device or a network. The implementation of these techniques
as well as similar adaptations falls within the scope of this
invention.

[0020] The client devices 102a-n shown in FIG. 1 each
include a computer-readable medium 108, e.g., memory
devices, storage media, and the like. In one embodiment, a
client device 102g includes a random access memory
(RAM) 108 coupled to a processor 110. The processor 110
executes computer-executable program instructions stored
in memory 108. Such processors may include a micropro-
cessor, an ASIC, state machines, or other processors, and can
be any of a number of suitable computer processors, such as
processors from Intel Corporation of Santa Clara, Calif. and
Motorola Corporation of Schaumburg, I1l. Such processors
include, or may be in communication with, media 108, for
example computer-readable media, which stores instructions
that, when executed by the processor, cause the processor to
perform the steps described herein. Embodiments of com-
puter-readable media 108 include, but are not limited to, an
electronic, optical, magnetic, or other storage or transmis-

Nov. 3, 2005

sion device capable of providing a processor, such as the
processor 110 of client 1024, with computer-readable
instructions. Other examples of suitable media include, but
are not limited to, a floppy disk, CD-ROM, DVD, magnetic
disk, memory chip, ROM, RAM, an ASIC, a configured
processor, all optical media, all magnetic tape or other
magnetic media, or any other medium from which a com-
puter processor can read instructions. Also, various other
forms of computer-readable media may transmit or carry
instructions to a computer, including a router, private or
public network, or other transmission device or channel,
both wired and wireless. The instructions may include code
from any suitable computer-programming language, includ-
ing, for example, C, C++, C#, Visual Basic, Java, Python,
Perl, and JavaScript.

[0021] Client devices 102a-n can be coupled to a network
106, or alternatively, can be stand alone machines. Client
devices 102a-n may also include a number of external or
internal devices such as a mouse, a CD-ROM, DVD, a
keyboard, a display device, or other input or output devices.
Examples of client devices 102a-n are personal computers,
digital assistants, personal digital assistants, cellular phones,
mobile phones, smart phones, pagers, digital tablets, laptop
computers, Internet appliances, and other processor-based
devices. In one embodiment, the client devices 102a-n may
be any type of processor-based platform that operates on any
suitable operating system, such as Microsoft® Windows®
or Linux, and that are capable of executing one or more
client application programs. For example, the client device
102a can include a personal computer executing client
application programs, also known as client applications 120.
The client applications 120 can be contained in memory 108
and can include, for example, a word-processing applica-
tion, a spreadsheet application, an email application, an
instant messenger application, a presentation application, an
Internet browser application, a calendar/organizer applica-
tion, a video playing application, an audio playing applica-
tion, an image display application, a file management pro-
gram, an operating system shell, and other applications
capable of being executed by a client device. Client appli-
cations 120 may also include client-side applications that
interact with or accesses other client or remote applications
(such as, for example, a web-browser executing on the client
device 102a that interacts with a remote e-mail server to
access e-mail).

[0022] The user 112a can interact with the various client
applications 120 and articles associated with the client
applications 120 via various input and output devices of the
client device 102a. Articles include, for example, word
processor documents, spreadsheet documents, presentation
documents, emails, instant messenger messages, database
entries, calendar entries, appointment entries, task manager
entries, source code files, and other client application pro-
gram content, files, messages, items, web pages of various
formats, such as HTML, XML, XHTML, Portable Docu-
ment Format (PDF) files, and media files, such as image
files, audio files, and video files, or any other documents or
items or groups of documents or items or information in
electronic form suitable for storage access in client devices.

[0023] The user’s 112a interaction with articles, the client
applications 120, and the client device 102a creates event
data that may be observed, recorded, analyzed or otherwise
used. An event can be any occurrence possible associated

US 2005/0246588 Al

with an article, client application 120, or client device 1024,
such as inputting text in an article, displaying an article on
a display device, sending an article, receiving an article,
manipulating an input device, opening an article, saving an
article, printing an article, closing an article, opening a client
application program, closing a client application program,
idle time, processor load, disk access, memory usage, bring-
ing a client application program to the foreground, changing
visual display details of the application (such as resizing or
minimizing), interacting with windows associated with the
client applications, and any other suitable occurrence asso-
ciated with an article, a client application program, or the
client device whatsoever. Additionally, event data can be
generated when the client device 102a interacts with an
article independent of the user 1124, such as when receiving
an email or performing a scheduled task.

[0024] 1In one embodiment, the memory 108 of the client
device 102a can also contain a capture processor 124, a
queue 126, and a search engine 122. The client device 1024
can also contain or is in communication with a data store
140. The capture processor 124 can capture events and pass
them to the queue 126. The queue 126 can pass the captured
events to the search engine 122 or the search engine 122 can
retrieve new events from the queue 126. In one embodiment,
the queue 126 notifies the search engine 122 when a new
event arrives in the queue 126 and the search engine 122
retrieves the event (or events) from the queue 126 when the
search engine 122 is ready to process the event (or events).
When the search engine receives an event it can be pro-
cessed and can be stored in the data store 140. The search
engine 122 can receive an explicit query from the user 1124
or generate an implicit query and it can retrieve information
from the data store 140 in response to the query. In another
embodiment, the queue is located in the search engine 122.
In still another embodiment, the client device 1024 does not
have a queue and the events are passed from the capture
processor 124 directly to the search engine 122. According
to other embodiments, the event data is transferred using an
information exchange protocol. The information exchange
protocol can include, for example, any suitable rule or
convention facilitating data exchange, and can include, a
communication mechanism: such as, for example, Exten-
sible Markup Language - Remote Procedure Calling proto-
col (XML/RPC), Hypertext Transfer Protocol (HTTP),
Simple Object Access Protocol (SOAP), shared memory,
sockets, local or remote procedure calling, or any other
suitable information exchange mechanism.

[0025] The capture processor 124 can capture an event by
identifying and extracting event data associated with an
event. Examples of events include sending or receiving an
instant messenger message, a user viewing a web page,
saving a word processing document, printing a spreadsheet
document, inputting text to compose or edit an email,
opening a presentation application, closing an instant mes-
senger application, entering a keystroke, moving the mouse,
hovering the mouse over a hyperlink, clicking on buttons in
windows, selecting from menus, or the like. An example of
event data captured by the capture processor 124 for an
event involving the viewing of a web page by a user includes
the URL of the web page, the time and date the user viewed
the web page, and content of the web page. In addition, in
one embodiment additional event data can be captured from
remote locations that include information related to the
event or article. For example, artist and other related infor-

Nov. 3, 2005

mation, e.g., album, director, genre, and the like, for a movie
or music file accessed by a user can be retrieved from a
network database server across the network 106.

[0026] Inone embodiment, the capture processor 124 may
include multiple capture components. For example, the
capture processor 124 can include a separate capture com-
ponent for each client application in order to capture events
associated with each application. The capture processor 124
can also include a separate capture component to monitor
and capture keystrokes input by the user and a separate
capture component that can monitor and capture items, such
as text, displayed on a display device associated with the
client device 102a. The keystroke capture component and
the display capture component can be used to capture events
when a client application capture component is not available
for a client application or in conjunction with a client
application capture component. The keystroke capture com-
ponent can also contain or access a keystroke database. The
keystroke database can provide correlation between key-
strokes and actions for applications. The keystroke capture
component and the display capture component can also
contain or access a history of previous keyboard or display
events.

[0027] In one embodiment, the capture processor 124 can
include a separate capture component that monitors overall
network activity in order to capture event data associated
with network activity, such as the receipt of an instant
messenger message. The capture processor 124 can include
a separate capture component that monitors overall client
device performance data, such as processor load, idle time,
disk access, the client applications in use, and the amount of
memory available. An individual capture component can
monitor multiple client applications and multiple capture
components can monitor different aspects of a single client
application.

[0028] In one embodiment, the capture processor 124,
through the individual capture components, can monitor
activity on the client device and can capture events by a
generalized event definition and registration mechanism,
such as an event schema. Each capture component can
define its own event schema or can use a predefined one.
Event schemas can differ depending on the client application
or activity the capture component is monitoring. Generally,
the event schema can describe the format for an event, for
example, by providing fields for event data associated with
the event (such as time of the event) and fields related to any
associated article (such as title) as well as the content of any
associated article (such as document body). An event
schema can describe the format for any suitable event data
that relates to an event. For example, an event schema for
user input, such as words typed or displayed to a display
device, can include the application used for the input, the
format of the text, the words and other items input, and the
time input. An event schema for an email event received by
a user can include header information, such as the content
from the subject, to, from, cc, and time received fields, and
body information. An event schema for a web page currently
being viewed by a user can include the Uniform Resource
Locator (URL) of the web page, the time being viewed, and
the content of the web page. An event schema for a word
processing document being saved by a user can include the
title of the document, the time saved, the location of the

US 2005/0246588 Al

document, the format of the document, the text of the
document, and a pointer to the location of the document.

[0029] In one embodiment, the keyboard capture compo-
nent may not use an event schema. Rather, in this embodi-
ment, the keyboard capture component can convert key-
strokes to a sequence of words and then can pass the
sequence of words to another component, such as the word
processing capture component. The word processing capture
component can use an event schema to express information
sent by the keystroke capture component.

[0030] More generally, an event schema can describe the
state of the system around the time of the event. For
example, an event schema can contain a URL for a web page
event associated with a previous web page that the user
navigated from. In addition, event schema can describe
fields with more complicated structure like lists. For
example, an event schema can contain fields that list mul-
tiple recipients. An event schema can also contain optional
fields so that an application can include additional event data
if desired.

[0031] The capture processor 124 can capture events
occurring presently (or “real-time events”) and can capture
events that have occurred in the past (or “historical events”).
Real-time events can be “indexable” or “non-indexable”. In
one embodiment, the search engine 122 indexes indexable
real-time events, but does not index non-indexable real-time
events. The search engine 122 may determine whether to
index an event based on the importance of the event.
Indexable real-time events can be more important events
associated with an article, such as viewing a web page,
loading or saving a file, and receiving or sending an instant
message (“IM”) or electronic mail (“email”). Non-indexable
events can be deemed not important enough by the search
engine 122 to index and store the event, such as moving the
mouse or selecting a portion of text in an article. Non-
indexable events can be used by the search engine 122 to
update the current user state. While all real-time events can
relate to what the user is currently doing (or the current user
state), indexable real-time events can be indexed and stored
in the data store 140.

[0032] Alternatively, in one embodiment, the search
engine 122 can index all real-time events. Real-time events
can include, for example, sending or receiving an article,
such as an instant messenger message, examining a portion
of an article, such as selecting a portion of text or moving a
mouse over a portion of a web page, changing an article,
such as typing a word in an email or pasting a sentence in
a word processing document, closing an article, such as
closing an instant messenger window or changing an email
message being viewed, loading, saving, opening, or viewing
an article, such as a word processing document, web page,
or email, listening to or saving an MP3 file or other
audio/video file, or updating the metadata of an article, such
as book marking a web page, printing a presentation docu-
ment, deleting a word processing document, or moving a
spreadsheet document.

[0033] Historical events are similar to indexable real-time
events except that the event occurred before the installation
of the search engine 122 or was otherwise not captured,
because, for example, the search engine 122 was not opera-
tional for a period of time while the client device 102a was
operational or because no capture component existed for a

Nov. 3, 2005

specific type of historical event at the time the event took
place. Examples of historical events include the user’s saved
word processing documents, media files, presentation docu-
ments, calendar entries, and spreadsheet documents, the
emails in a user’s inbox, and the web pages bookmarked by
the user. The capture processor 124 can capture historical
events by periodically crawling the memory 108 and any
associated data storage device for events not previously
captured by the capture processor 124. The capture proces-
sor 124 can also capture historical events by requesting
certain client applications, such as a web browser or an
email application, to retrieve articles and other associated
information. For example, the capture processor 124 can
request that the web browser application obtain all viewed
web pages by the user or request that the email application
obtain all email messages associated with the user. These
articles may not currently exist in memory 108 or on a
storage device of the client device 102a4. For example, the
email application may have to retrieve emails from a server
device. In one embodiment, the search engine 122 indexes
historical events.

[0034] In the embodiment shown in FIG. 1, events cap-
tured by the capture processor 124 are sent to the queue 126
in the format described by an event schema. The capture
processor 124 can also send performance data to the queue
126. Examples of performance data include current proces-
sor load, average processor load over a predetermined period
of time, idle time, disk access, the client applications in use,
and the amount of memory available. Performance data can
also be provided by specific performance monitoring com-
ponents, some of which may be part of the search engine
122, for example. The performance data in the queue 126
can be retrieved by the search engine 122 and the capture
components of the capture processor 124. For example,
capture components can retrieve the performance data to
alter how many events are sent to the queue 126 or how
detailed the events are that are sent (fewer or smaller events
when the system is busy) or how frequently events are sent
(events are sent less often when the system is busy or there
are too many events waiting to be processed). The search
engine 122 can use performance data to determine when it
indexes various events and when and how often it issues
implicit queries.

[0035] In one embodiment, the queue 126 holds events
until the search engine 122 is ready to process an event or
events. Alternatively, the queue 126 uses the performance
data to help determine how quickly to provide the events to
the search engine 122. The queue 126 can include one or
more separate queues, for example, a user state queue and an
index queue. In one embodiment, the index queue can queue
indexable events. Alternatively, the queue 126 can have
additional queues or include a single queue. The queue 126
can be implemented as a circular priority queue using
memory mapped files. The queue can be a multiple-priority
queue where higher priority events are served before lower
priority events, and other components may be able to specify
the type of events they are interested in. Generally, real-time
events can be given higher priority than historical events,
and indexable events can be given higher priority than
non-indexable real-time events. Other implementations of
the queue 126 are possible. In another embodiment, the
client device 102a does not have a queue 126. In this
embodiment, events are passed directly from the capture
processor 124 to the search engine 122. In other embodi-

US 2005/0246588 Al

ments, events can be transferred between the capture com-
ponents and the search engine using suitable information
exchange mechanisms such as: Extensible Markup Lan-
guage - Remote Procedure Calling protocol (XML/RPC),
Hypertext Transfer Protocol (HTTP), Simple Object Access
Protocol (SOAP), shared memory, sockets, local or remote
procedure calling, or any other suitable information
exchange mechanism.

[0036] Referring back to FIG. 1, in one embodiment, the
search engine 122 can contain an indexer 130, a query
system 132, and a formatter 134. The query system 132 can
retrieve all real-time events and performance data from the
queue 126. The query system 132 can use performance data
and real-time events to update the current user state and
generate an implicit query. An implicit query can be an
automatically generated query based on the current user
state. The query system 132 can also receive and process
explicit queries from the user 112a4. Performance data can
also be retrieved by the search engine 122 from the queue
126 for use in determining the amount of activity possible by
the search engine 122.

[0037] In the embodiment shown in FIG. 1, indexable
real-time events and historical events (indexable events) are
retrieved from the queue 126 by the indexer 130. Alterna-
tively, the queue 126 may send the indexable events to the
indexer 130. The indexer 130 can index the indexable events
and can send them to the data store 140 where they are
stored. The data store 140 can be any type of computer-
readable media and can be integrated with the client device
1024, such as a hard drive, or external to the client device
1024, such as an external hard drive or on another data
storage device accessed through the network 106. The data
store can be one or more logical or physical storage areas.
In one embodiment, the data store 140 can be in memory
108. The data store 140 may facilitate one method or a
combination of methods for storing data, including without
limitation, arrays, hash tables, lists, and pairs, and may
include compression and encryption. In the embodiment
shown in FIG. 1, the data store includes an index 142, a
database 144 and a repository 146.

[0038] In the embodiment shown in FIG. 1, when the
indexer 130 receives an event, the indexer 130 can deter-
mine, from the event schema, terms (if any) associated with
the event, the time of the event (if available), images (if any)
associated with the event, and/or other information defining
the event. The indexer 130 can also determine if the event
relates to other events and associate the event with related
events. For example, for an event concerning a web page,
the indexer 130 can associate this event with other events
concerning the same web page. This association information
can be stored in the database 133 in a document for each
group of related events.

[0039] The indexer 130 can send and incorporate the terms
and times associated with the event in the index 142 of the
data store 140. The event can be sent to the database 144 for
storage and the content of the associated article and any
associated images can be stored in the repository 146. The
conversation object associated with instant messenger mes-
sages can be stored in the database 144.

[0040] In the embodiment shown in FIG. 1, a user 1124
can input an explicit query into a search engine interface on
the client device 102g, which is received by the search

Nov. 3, 2005

engine 122. In one embodiment, the search engine interface
on the client device 102z includes a graphical/textual dis-
play, e.g., an HTML-based web page. In alternative embodi-
ments the search engine interface includes various input/
output modes—for example, a voice activated system, a
touch based system, or the like.

[0041] The search engine 122 can also generate an implicit
query based on a current user state, which can be determined
by the query system 132 from real-time events. Based on the
query, the query system 132 can locate relevant information
in the data store 140 and provide a result set. In one
embodiment, the result set includes article identifiers for
articles associated with the client applications 120 or client
articles. Client articles include articles associated with the
user 1124 or client device 1024, such as the user’s emails,
word processing documents, instant messenger messages,
previously viewed web pages and any other article or
portion of an article associated with the client device 102a
or user 1124. An article identifier may be, for example, a
Uniform Resource Locator (URL), a file name, a link, an
icon, a path for a local file, any alphanumerical identifier, or
other suitable information that may identify an article. In
another embodiment, the result set also includes article
identifiers for articles located on other systems on the
network 106, e.g., network articles located by a search
engine on a server device. Network articles include articles
located on systems on the network 106 not previously
viewed or otherwise referenced by the user 1124, such as
web pages not previously viewed by the user 1124.

[0042] The formatter 134 can receive the search result set
from the query system 132 of the search engine 122 and can
format the results for output to a display processor 128. In
one embodiment, the formatter 134 can format the results in
XML, HTML, or tab delineated text. The display processor
128 can be contained in memory 108 and can control the
display of the result set on a display device associated with
the client device 1024. The display processor 128 may
include various components. For example, in one embodi-
ment, the display processor 128 includes a Hypertext Trans-
fer Protocol (HTTP) server that receives requests for infor-
mation and responds by constructing and transmitting
Hypertext Markup Language (HTML) pages. In one such
embodiment, the HTTP server includes a scaled-down ver-
sion of the Apache Web server. The display processor 128
can be associated with a set of APIs to allow various
applications to receive the results and display them in
various formats. The display APIs can be implemented in
various ways, including, for example, as DLL exports, COM
interface, VB, JAVA, or NET libraries, or as a web service.

[0043] Through the client devices 102a-n, users 112a -n
can communicate over the network 106, with each other and
with other systems and devices coupled to the network 106.
As shown in FIG. 1, a server device 150 can be coupled to
the network 106. In the embodiment shown in FIG. 1, the
search engine 122 can transmit a search query included in an
explicit or implicit query or both to the server device 150.
The user 1124 can also enter a search query in a search
engine interface, which can be transmitted to the server
device 150 by the client device 1024 via the network 106. In
another embodiment, the query signal may instead be sent to
a proxy server (not shown), which then transmits the query
signal to server device 150. Other configurations are also
possible.

US 2005/0246588 Al

[0044] The server device 150 can include a server execut-
ing a search engine application program, such as the
Google™ search engine. In other embodiments, the server
device 150 can include a related information server or an
advertising server. Similar to the client devices 102a-n, the
server device 150 can include a processor 160 coupled to a
computer-readable memory 162. Server device 150,
depicted as a single computer system, may be implemented
as a network of computer processors. Examples of a server
device 150 include servers, mainframe computers, net-
worked computers, a processor-based device, and similar
types of systems and devices. The server processor 160 can
be any of a number of computer processors, such as pro-
cessors from Intel Corporation of Santa Clara, Calif. and
Motorola Corporation of Schaumburg, Ill. In another
embodiment, the server device 150 may exist on a client-
device. In still another embodiment, there can be multiple
server devices 150.

[0045] Memory 162 contains the search engine applica-
tion program, also known as a network search engine 170.
The search engine 170 can locate relevant information from
the network 106 in response to a search query from a client
device 102a. The search engine 170 then can provide a result
set to the client device 102a via the network 106.

[0046] The result set can include one or more article
identifiers. An article identifier may be, for example, a
Uniform Resource Locator (URL), a file name, a link, an
icon, a path for a local file, or anything else that identifies an
article. In one embodiment, an article identifier can include
a URL associated with an article.

[0047] In one embodiment, the server device 150, or
related device, has previously performed a crawl of the
network 106 to locate articles, such as web pages, stored at
other devices or systems coupled to the network 106, and
indexed the articles in memory 162 or on another data
storage device.

[0048] 1t should be noted that other embodiments of the
present invention may include systems having a different
architecture than that which is shown in FIG. 1. For
example, in some other embodiments of the present inven-
tion, the client device 102« is a stand-alone device and is not
coupled to a network.

[0049] Now referring to FIG. 2, a flow diagram illustrat-
ing an exemplary embodiment of a method for capturing and
processing event data associated with a client device is
shown. It should be noted that various event data capturing
and processing methods in accordance with embodiments of
the present invention may be carried out. For example, in
one embodiment, application data is captured based on an
application program interface (“API”) associated with an
application that is provided for interacting with the appli-
cation. In another embodiment, keystrokes associated with
an application are captured and events are determined based
on, among other things, actions associated with the key-
strokes. In another embodiment, display elements and
related information is captured and events are determined
based on, at least in part, the captured display information.
These are some non-exhaustive examples of the multiple
event data capturing and processing methods in accordance
with embodiments of the present invention.

[0050] In one embodiment, it can be determined whether

to index the event, and the event can be indexed and stored
if it is so determined.

Nov. 3, 2005

[0051] FIG. 2 illustrates an exemplary method 200 that
provides a method for capturing and processing a real-time
event. This exemplary method is provided by way of
example, as it will be appreciated from the foregoing
description of exemplary embodiments that there are a
variety of ways to carry out methods in other embodiments
of the present invention. The method 200 shown in FIG. 2
can be executed or otherwise performed by any of various
systems. The method 200 is described below as carried out
by the system 100 shown in FIG. 1 by way of example, and
various elements of the system 100 are referenced in
explaining the example method of FIG. 2.

[0052] 1In 202, the capture processor 124 captures an
event. The capture processor 124 can capture an event by
identifying and compiling event data associated with the
event upon the occurrence of the event. The capture pro-
cessor 124 may have separate capture components for each
client application, network monitoring, performance data
capture, keystroke capture, and display capture. For
example, an event can occur when a user 112a types a
predetermined number of words in a client application. The
event data associated with this event can be, for example, the
application used for the input, the format of the text, the
words input; and the time input. In one embodiment, the
capture component can use a generalized event definition
mechanism, such as an event schema that it has previously
registered with the client device 1024, to capture or express
the event.

[0053] FIG. 3 provides an example of capturing a real-
time event of step 202. Specifically, FIG. 3 shows a flow
diagram illustrating an exemplary embodiment of a method
for capturing keystroke information on a client device. In
this embodiment, a plurality of keystrokes associated with
an application is received, each keystroke is processed to
determine an associated action forming a plurality of asso-
ciated actions, and an event is determined based at least in
part on the plurality of associated actions. An application in
focus can first be determined.

[0054] In one embodiment, the event can be a number of
words and it can be determined that the plurality of associ-
ated actions forms a word or words. The word or words can
be determined at least in part by the receipt of at least one
keystroke indicating a space or a punctuation symbol. In
another embodiment, the event can be a number of charac-
ters and it can be determined that the plurality of associated
actions form a character or characters.

[0055] 1Inone embodiment, a capture state can be updated
after each keystroke is processed. In one embodiment, a
current user state can be updated based at least in part on the
event. The event can be indexed and stored.

[0056] 1In one embodiment, each associated action can be
determined at least in part by matching the keystroke to an
entry in a keystroke table and determining an action in the
keystroke table associated with the entry. The action can
include one of adding a character to a word, deleting a
character from a word, inserting a character, overwriting a
character, deleting a word, deleting a paragraph, selecting an
item, and repositioning the cursor. The keystroke table can
be associated with the application or can be a generic
keystroke table.

[0057] In another embodiment, keystrokes associated with
an application are received, an event is determined based on

US 2005/0246588 Al

user input, and it is determined whether to index the event.
User input can be one or more of a number of words
determined from the keystrokes, a number of characters
determined from the keystrokes, and a change is focus from
the application to another application. Determining whether
to index the event can include determining whether the event
is important to the user.

[0058] In 302, a keystroke database is provided. The
keystroke database can contain, for various client applica-
tions, tables of keystroke commands and the respective
action for each command. In one embodiment, the keystroke
database has a separate table for each separate client appli-
cation. A generic table may be used for an application if a
specific table does not exist for the particular application. In
one embodiment, the same table may be used for groups of
applications. For example, the same table may be used for
applications from the same developer. For example, the
same table may be used for all Microsoft® applications and
a different table may be used for all applications from
Lotus®. Additionally, the same table may be used for related
applications, such as Office® applications from Microsoft®,
or word processing applications from any developer. The
keystroke tables can be created manually for each applica-
tion. Alternatively, the keystroke tables can be created
automatically by automatically determining respective
actions of each keystroke for each application.

[0059] 1In 303, the keystroke capture component is called.
The keystroke capture component can operate regularly or
even constantly so that it monitors all keystroke activity or
can be selectively called by the capture processor 124 or
other capture components when needed or at various times.
In 304, th e keystroke capture component can determine the
client application in focus. The application in focus is the
client application currently being used by the user 1124. For
example, it can be the client application that the user 1124
is inputting text in. In one embodiment, the application in
focus is determined so that the keystroke capture component
can use the keystroke table associated with the application in
focus from the keystroke database. For example, if the
application in focus is a specific word processing applica-
tion, the keystroke capture component can call up the
corresponding specific word processing application key-
stroke table.

[0060] In 306, the event data is reset by the keystroke
capture component. In one embodiment, event data is com-
plied in an event in a format defined by an event schema and
the keystroke capture component can register a specific
keystroke capture event schema, and resetting the event
includes clearing out any existing event data. A counter N
can also be reset. In one embodiment, the counter counts the
number of words captured by the keystroke capture com-
ponent. In such an embodiment, when the event is reset the
counter is reset to zero.

[0061] In 308, the keystroke capture component captures
a keystroke input by the user 112a. A user can input a
keystroke through a variety of input devices, such as a
keyboard. A keystroke can include a single key input or a
multiple key input and can include a text input and an editing
command input. For example, a keystroke can include the
“G” key or the “Shift” and the “G” keys. A keystroke can
also include the “Backspace” key or the “Control” and
“Backspace” keys. The keystroke capture component can

Nov. 3, 2005

receive a keystroke by receiving keystroke messages
through an application callback that can be invoked by the
operating system. The keystroke capture component can
also receive a keystroke through monitoring an input buffer,
such as a keyboard buffer, at the operating system level.
Other methods of inputting characters, such as handwriting,
can be captured.

[0062] 1In 310, the keystroke capture component processes
the keystroke. In the embodiment shown, the keystroke
capture component processes the received keystroke by
matching the keystroke to an entry in the keystroke table for
the specific application in focus, and determining the respec-
tive action for the keystroke. For example, if the received
keystroke is the “SHIFT” key and the “G” key in a specific
word processing application, the keystroke capture compo-
nent can match the “SHIFT” key and the “G” key in the
keystroke table for the specific application and determine the
associated action, for example, the output of the letter “G”.
If the received keystroke is the “Control” and “Backspace”
keys, the keystroke capture component can match these keys
with the respective action in the keystroke table for the
specific application and determine the associated action, for
example, the action of deleting the word preceding the
cursor. Other possible actions include moving the cursor up
or down one line, moving the cursor up or down one
paragraph, and moving the cursor to the beginning or end of
a document, for example. The keystroke capture component
can keep track of the current position of the cursor with
respect to previous characters entered. For example, if the
user types 5 characters, hits “left arrow” three times, types
one character, and hits “right arrow” three times, the com-
ponent can identify that the user went back and inserted a
character in the word (for applications where “left arrow”
corresponds with moving the cursor back one character).
The component can further keep track of whether each
application is in “insert” mode, so that it knows if new
characters overlay any existing characters.

[0063] In another embodiment, the keystroke capture
component may not process the keystrokes directly. Instead,
the keystroke capture component may first pass keystrokes
to the operating system, as if the user had actively sent them
to the keyboard capture component, and not an application.
In this way, the operating system can do the work of
translating keystrokes into higher level messages (charac-
ters, key movement, etc.), and can then return these mes-
sages to the keystroke capture component for further pro-
cessing. Sending keystrokes to the operating system for
intermediate processing, instead of processing them directly,
may be advantageous for several reasons. For example, it
may avoid some of the difficulties of handling multi-key-
stroke characters (including non-English character entry),
and it may ensure keystrokes get processed in a manner that
is consistent with operating system behavior.

[0064] 1In 312, the keystroke capture component adds the
processed keystroke to the event data. In the embodiment
shown, the keystroke capture component captures event data
as described by the event schema and the processed key-
stroke is added to the event data. For example, if the
processed keystroke indicates the addition of the letter G, the
letter G is added to the event data. If the processed keystroke
indicates to delete the word preceding the cursor and a word
is contained in the event data this word can be deleted.
Additionally, the keystroke capture component can add the

US 2005/0246588 Al

processed keystroke to a capture state. The keystroke cap-
ture component can maintain the capture state containing
previous keystrokes as it is determined what recent word(s)
the user has entered. The capture state can be updated before
an event is generated.

[0065] 1In 314, the keystroke capture component deter-
mines if a complete word has been added to the event. A
word can be a series of characters representing a spoken
word, abbreviation, term, or semantic unit. For example,
“WORLD SERIES”, “ASCII”, “MR” and “GOOGLE” can
be words. The keystroke capture component can determine
if a complete word has been entered by a variety of methods.
In one embodiment, the keystroke capture component looks
for a series of characters followed by a space, such as
“GOOGLE”, or certain punctuation characters, such as
“GOOGLE,” to determine if a complete word has been
entered. If a complete word has not been entered, then the
keystroke capture component goes to step 316. In 316, the
keystroke capture component can determine whether-the
application previously in focus is still in focus or if the
application in focus has changed and another application is
now in focus. If the application in focus has not changed, the
keystroke capture component returns to step 308 and
receives another keystroke. If the application in focus has
changed, the keystroke capture component returns to step
304 and determines the current application in focus. If the
keystroke capture component identifies an action such as
moving the cursor up one line, it may update the capture
state to reflect the new cursor location. If the keystroke
capture component does not have the capture state for that
location, or cannot accurately pinpoint the new location, it
may simply reset any partially captured word. As another
example, the keystroke “shift left arrow” may select the
previous character in a particular application. The keystroke
capture component can recognize this action and possible
subsequent actions such as deleting the selection or pasting
the selection elsewhere in the document.

[0066] If, in step 314, the keystroke capture component
determines that a complete word has been received, then in
step 318 the counter N is incremented by one. In step 320,
the capture processor determines if the counter N equals an
integer T. The integer T can be, for example, a number of
words. The number of words can be predetermined or can be
determined based on a variety of suitable factors, such as the
current application in focus or other user activity. In one
example, T equals one so that the keystroke capture com-
ponent may create an event upon the identification of each
word entered by the user 1124. Alternatively, T can be a
number of characters. Like the number of words, the number
of characters can be predetermined or can be determined
based on a variety of suitable factors. If, in step 320, N is
found not to equal T, then the keystroke capture component
goes to step 316, where the keystroke capture component
determines if the application in focus has changed. If the
keystroke capture component determines that N does equal
T, then the keystroke capture component proceeds to step
322. For example, if N is a counter counting the number of
words captured and T is set to one and “GOOGLE” is
received, then the keystroke capture component proceeds to
step 322.

[0067] 1In 322, the keystroke capture component compiles
the event. In the embodiment shown, the keystroke capture
component compiles the event by compiling the event data

Nov. 3, 2005

associated with specific fields described by the event
schema. For example, the event data can include the appli-
cation used for the input, the format of the text, the word or
words input, and the time input. When the keystroke capture
component has compiled the event, the method 200 can
continue at step 204 as shown in FIG. 2.

[0068] FIG. 4 provides another example of capturing an
event, for example, a real time event 202 as shown in FIG.
2, based on display information. FIG. 4 shows a flow
diagram illustrating an exemplary embodiment of a method
for capturing display information on a client device. Typi-
cally, applications in a client device invoke display calls to
display information associated with the application on a user
display, such as a monitor, liquid crystal display, plasma
display, or the like. In one embodiment, the capture proces-
sor 124 includes a display capture component for determin-
ing events based on, at least in part, the displays or windows
associated with applications. It should be noted that win-
dows associated with applications may be hidden or dis-
played and visible to the user at any given time. Information
on a display can be determined at least in part by using an
array of a current state of the display. and updating the array
with display calls. Information on a display can also be
determined, at least in part, by constructing display items
based at least in part on display positions of the display calls.
The display calls can be processed by analyzing one or more
of the x,y coordinates, lengths, or relative positions of
several items output to the display using display calls.

[0069] In one embodiment, an application in focus is first
determined from which to capture associated display infor-
mation to generate events. Events can include, for example,
a number of words determined to be output on the display.
In one embodiment, a capture state can be updated after each
display call is processed and a current user state can be
updated based at least in part on the event.

[0070] With respect to FIG. 4, initially, a display capture
component is called 400. The display capture component
can operate regularly, e.g., on a schedule, or even constantly
so that it monitors all display activity, or can be selectively
called when needed. Then, the application in focus is deter-
mined 402. In one embodiment, the application in focus is
the client application currently being used. For example, in
a windows-based operating system environment the display
capture component determines which window the user is
actively using.

[0071] For a first or new call, the event is reset 404. An
event may be reset for a variety of reasons, such as, for
example, the user having switched the application in focus,
an event having been captured and sent for processing, or for
a variety of other reasons. In one embodiment, resetting 404
an event includes indicating or generating a new event. The
existing event data prior to the resetting 404 is saved in a
capture state and maintained until the reset. The indication
of a new event triggers the sending of the existing event data
in the previous event for processing. For example, in one
embodiment, the reset finction saves the previous event and
sends it to the queue 126 before initializing the new event.
In one embodiment, new events can be generated according
to an event schema associated with an event type. The event
schemas can include formatting for various data fields
associated with the different types of events.

[0072] Next, a display call is received 406. For example,
in one embodiment, the display capture component receives

US 2005/0246588 Al

a display call. A display call can be an instruction sent by the
operating system to the display device associated with the
client device that instructs the display device to display an
item or change the display of an item on the display device.
For example, the display call can be to display the text
“Google” in font “Times New Roman” at a display position,
such as position x,y. This display call can, for example,
cause the display on the screen of a computer monitor of the
text “Google” at the position X,y in the active window and
in the font “Times New Roman”. A display call can also be,
for example, to delete an item at a given position, change the
font of a word, change the position of an item on the display,
or the like. In one embodiment, display calls can also be
determined by injecting code into applications or through
the use of Dynamic Link Libraries (“DLLs”) to hook and
intercept operating system API calls as further detailed
below. In another embodiment, other methods of output,
such as calls to a printer driver, an audio driver, or the like,
can also be captured.

[0073] After the display call is received 406, the display
call is processed 408 to determine the event data associated
with the current display. The display includes the visual
information the user sees in the window or windows. In one
embodiment, the event data associated with the current
display is captured and placed in an event format according
to an event schema associated with the particular event type
or application. In one embodiment, the captured event data
may be saved or maintained in a capture state, for example,
by keeping an array of items that have been output to the
current display. For example, in one embodiment, a display
capture component can use the x and y coordinates of the
items to determine words, spaces between words, and the
beginning of a new line. The display call may be used by the
display capture component to update the array of the current
display. For example, if the display call is to write the text
“Google” in font “Times New Roman” at position Xy,
previously displaying the word “Goolge,” then the text
“Google” in font “Times New Roman” is added to the
display at position X,y replacing the text “Goolge.” The
updated array associated with the current display, including
the text “Google” can then be added to the event. The
capture state can also be updated by replacing the previous
state array, “Goolge,” with the updated array, “Google.”
Accordingly, updates to the display can be reflected in the
associated event for as long as the event is not complete.

[0074] Whether a complete event has occurred is next
determined 410. In one embodiment, to determine 410
whether an event is complete, a complete condition is
checked. For example, a complete condition can include
adding a single word or a predetermined number of words to
the display on the display device. Alternatively, as another
example, a complete condition can include a particular user
action on the display, e.g., a mouse click on a hyperlink, a
button, a menu item, or the like. If a complete event has not
yet occurred, then it is determined 412 whether the appli-
cation in focus has changed. If the application in focus has
not changed, the next display call associated with the active
window is received 406. Conversely, if the application in
focus has changed, the new application in focus is again
determined 402 and the capturing process for a new event
starts.

[0075] If it is determined 410 that a complete event has
occurred, then the completed event is compiled 414. For

Nov. 3, 2005

example, in one embodiment, the display capture component
compiles an event by providing all the event related data
according to an event schema. The event data can include the
application used, the format of the display, the time of
display, the content displayed, the font and font size of any
words displayed and any other data associated with the event
that can be subsequently useful for indexing or to a user.

[0076] Now referring to FIG. 5, a flow diagram of one
embodiment of a profile based display capture method 500
is shown. In this embodiment, a display capture component
can be configured to capture information associated with
windows for selected applications. The application windows
may be displayed in the user’s view or hidden within the
computer system. Some examples of selected applications
for which display capture components may be configured
include applications that do not provide a public API,
applications that encrypt or otherwise protect against data
capture from its application windows, or the like. The
capture processor in this embodiment can include several
capture components. For some of the target applications
from which event data is captured, a profile-based capture
component is used.

[0077] Accordingly, in one embodiment, upon initializa-
tion of the capture component process, preexisting applica-
tions with associated windows are first checked 501 in order
to determine their identity. In one embodiment, a target
application profile is used for determining the identity of the
running applications. The application profile includes iden-
tifying information associated with the target applications.
The application profile may include, for example, a unique
window class name associated with windows of a target
application (whether hidden or displayed), a unique system
path name for stored binary files associated with the target
application, operating system registry entries associated
with the target application, or the like. In one embodiment,
upon initialization and after the existing applications are
checked 501, notifications for subsequent window creation
events are received, for example, by subscribing through the
operating system to window creation events. For every
window creation event, the originating application is
checked 501 to determine if it is a selected target application.

[0078] Once a target application is identified, computer
code for an application-specific display capture component
is associated 502 with the target application. For example, in
one embodiment, a Windows® API based hook is set to load
the display capture code from a dynamic link library
(“DLL”) into the target application process. In one embodi-
ment, the display capture code circumvents the encryption/
data capture protection features of the target application by
modifying, intercepting, or bypassing its interactions with
the operating system.

[0079] Inone embodiment, event data from a target appli-
cation is derived from a subset of the windows associated
with the target application. Accordingly, the windows asso-
ciated with the target applications are compared 504 with
stored window profiles. The window profiles contain infor-
mation that can be used to identify. target windows, includ-
ing, for example, text to be contained in the window’s title,
the number and type of display elements (e.g., buttons,
pull-down menus, text input boxes, and the like), text to be
displayed on display elements, the location or arrangement
of display elements, and the like.

US 2005/0246588 Al

[0080] For example, in one embodiment, a text window of
an instant messaging (“IM”) target application is the target
window. The instant message text (both that which is input,
and that which is received) is the event data to be captured
and associated with an IM event (i.c., one data field in the
IM event schema includes the text exchanged by the users in
one session). The window profile in this example (i.e., the
window profile of the target window, which is the IM
conversation window) includes the string “Chatting with” in
the window title, a “Send” button, and a large free text input
box.

[0081] For each target window in the target application,
the state of display elements or other target window display
related variables is monitored 506. For example, the state of
handlers associated with display buttons or equivalent key-
board shortcuts (e.g., the “Send” button or the Ctrl+Enter
key sequence) is monitored. Upon detection of the state
change of a display element (e.g., a button) of interest, event
data in the target window is captured 508.

[0082] In one embodiment, the data capture is enabled by
the display capture component code hooked into the target
application process. This code intercepts operating system
messages between the target application and the operating
system, and modifies responses to these operating system
messages in order to enable the data capture. For example,
in a Windows® based system, an application configured to
provide an empty string in response to every “get text”
command (e.g., WM_GETTEXT) is modified by the capture
component code to use the default handler to provide the
window display text. Thus, the capture component code
inserted into the target process allows the modification of
application behavior, for example, to bypass data capture
prevention measures from within the process.

[0083] The event data display capture 508 can be repeated
based on state changes, and the capture state associated with
an event can be updated with newly captured event data. For
example, for every user click on the “Send” button in an IM
application, the text associated with an instant message chat
session can be captured 508 and stored in memory in a data
structure associated with an IM event for the current session.
Subsequent clicks on the “Send” button can cause the
capture of additional text exchanges in the IM session
between the users. Such state-based data capture beneficially
provides an efficient scheme to capture display data upon
user interaction with a target window. Time-based polling
schemes can be less efficient since they may operate even if
the user does not provide any new input to the target process.
Moreover, state-based data capture can reduce the likelihood
of missing some entered data because generally, after a user
input, some state change is required (e.g., clicking on a
“Send” button, an “OK” button, a “Continue” button, or
typing equivalent keyboard shortcuts or the like).

[0084] Referring again to FIG. 5, the state of the target
window termination is monitored 510. Upon termination of
the target window an event can be completed 512. Any event
data entry into the event data store can be finished and the
captured event can be sent to the indexer. While the target
window remains active, the display capture can continue for
every state change in the window.

[0085] Referring now back to FIG. 2, once an event is
captured (e.g., as described with respect to FIGS. 4 and 5),
the event. data processing method proceeds with step 204.

Nov. 3, 2005

The keystroke capture component described with respect to
FIG. 4 and the display capture component described with
respect to FIG. 5 can be used together in a capture processor
124, in addition to other capture components, to determine
user activity (for example, what the user is viewing on a
visual output device, such as a display). Other capture
components can include audio and video data capturing
techniques, e.g., voice recognition, image processing, and
the like, for audio and video events that can be included in
the index.

[0086] After an event is captured, it is determined 204
whether the event is an indexable event. As explained above,
some real-time events may not be indexed (non-indexable
real-time events). In one embodiment, non-indexable real-
time events are used to update the current user state and can
be, for example, examining a portion of an article, changing
an article, and closing an article. In this embodiment,
non-indexable events are not indexed or sent for storage by
the indexer 130. Indexable events can be indexable real-time
events or historical events. Keystrokes and display calls can
be non-indexable events, such as the input of a number of
words by a user or the display of a number of words on a
display device. Keystrokes and display calls can also be
indexable events, such as, for example, when an entire
article or portion of an article is input by a user or displayed
on a display device.

[0087] 1If an indexable event is determined 204, then, the
event can be sent 206 for indexing, e.g., to queue 126, with
an indication that it is an indexable event. In the embodiment
shown in FIG. 1, indexable real-time events are sent to both
auser state queue and an index queue within queue 126, and
historical events are sent to the index queue within the queue
126. Alternatively, indexable real-time events may not be
sent to the user state queue to save computational time. The
capture processor 124 can send the event in a form described
by an event schema to the queue 126.

[0088] If the event is determined 204 to be a non-index-
able event, then, the non-indexable event can be sent 206 for
further processing, e.g., to a user state queue of the queue
126, with an indication that it is not to be indexed. For
example, when a user is composing an email a capture
component can capture a number of words input by the user
in the composition of the email. A capture component can
capture the input text as an event. While this event can be
helpful in determining a current state of the user 1124, it may
not be important enough to be indexed and sent for storage
by the search engine, so that the user may later retrieve this
information. Alternatively, in an example where a user opens
a received email, such an event can provide information on
a current user state, but it can also be indexed and sent for
storage by the search engine 122, because the user 112g may
later be interested in retrieving this email.

[0089] In one embodiment, the queue 126 holds the event
until the search engine is ready to receive it. Based on the
event data, the event can be prioritized on the queue 126 for
handling. For example, historical events can be given a
lower priority for processing by the queue 126 than real-time
events. In one embodiment, when the indexer 130 is ready
to process another event, it can retrieve one or more events
from the index queue in the queue 126. The query system
132 can retrieve one or more events from the user state
queue of the queue 126 when it is ready to update the user

US 2005/0246588 Al

state. In another embodiment, a queue is not used and events
are sent directly to the search engine 122 from the capture
processor 124.

[0090] After indexing determinations are made 204 and
events are properly queued 206, events are indexed and
stored 208. In one embodiment, the indexer 130 can retrieve
an event from the queue 126 when it is ready to process the
event. The indexer 130 determines if the event is a duplicate
event and if not assigns an Event ID to the event. The
indexer 130 can also associate the event with related events.
For example, in an embodiment as shown in FIG. 2, using
the event schema, the indexer 130 determines indexable
terms associated with the event, dates and times associated
with the event, and other data associated with the event. The
indexer 130 can associate the Event ID with the indexable
terms that are contained in the index 142. The event can be
stored in the database 144 and the content of the event can
be stored in the repository 146.

[0091] The environment shown reflects a client-side
search engine architecture embodiment. Other embodiments
are possible, such as a stand alone client device or a network
search engine.

[0092] While particular embodiments and applications of
the present invention have been illustrated and described
herein, it is to be understood that the invention is not limited
to the precise construction and components disclosed herein
and that various modifications, changes, and variations may
be made in the arrangement, operation, and details of the
methods and apparatuses of the present invention without
departing from the spirit and scope of the invention as it is
defined in the appended claims.

What is claimed is:

1. A computer based method for capturing event data from
a target window of a target application in a computer system,
the method comprising:

comparing window information with a target window
profile associated with the target window of the target
application; and

capturing event data from the target window upon detect-
ing a state change of a state associated with an element
in the window.

2. The method of claim 1, further comprising:

receiving window creation information from a first appli-
cation; and

determining whether the first application is an instance of

the target application.

3. The method of claim 2, wherein determining comprises
comparing the window creation information with a target
application profile associated with the target application.

4. The method of claim 2, further comprising:

determining whether a second application associated with
an existing window is an instance of the target appli-
cation.

5. The method of claim 4, wherein determining comprises
comparing application related data from the second appli-
cation with the target application profile associated with the
target application.

6. The method of claim 4, wherein the application related
data includes at least one of a window class name, a path
name, or a registry entry associated with the application.

Nov. 3, 2005

7. The method of claim 1, wherein capturing event data
further comprises storing captured window information in a
data structure associated with an event according to an event
schema.

8. The method of claim 7, further comprising indexing
and storing the event.

9. The method of claim 1, further comprising:

updating a capture state of an event with additional
captured event data from the window in response to a
subsequent state change of the state associated with the
element in the window.

10. The method of claim 1, wherein the element in the
window includes at least one of a button, a pull-down menu,
or a hyperlink.

11. The method of claim 2, wherein the window creation
information includes at least one of a window class name, a
path name, or a registry entry associated with the first
application.

12. The method of claim 3, wherein the target application
profile includes at least one of a window class name, a path
name, or a registry entry associated with the target applica-
tion.

13. The method of claim 1, wherein the target application
is associated with a plurality of target window profiles, each
target window profile comprising identifying display ele-
ment information for target windows from which to capture
event data.

14. The method of claim 1, further comprising:

associating display capturing code within a target appli-

cation.

15. The method of claim 14, wherein the display capturing
code modifies responses of the target application to operat-
ing system requests.

16. The method of claim 15, wherein the operating
systems requests include messages from other applications
based on an application programming interface associated
with the operating system.

17. The method of claim 15, wherein the operating system
requests include requests for text in the target window.

18. The method of claim 14, wherein associating display
capturing code includes setting a hook with respect to the
target application process.

19. The method of claim 14, wherein the hook is config-
ured to intercept messages between an operating system and
the target application.

20. A computer based method for determining indexing
events, comprising:

receiving a plurality of display calls associated with
computer applications in a computer system;

processing the plurality of display calls to determine a
target window based on a target window profile;

determining an event based at least in part on data
captured from the target window; and

indexing the data captured from the target window and

storing the event.

21. The method of claim 20, further comprising deter-
mining a target application based on a plurality of stored
target application profiles, and farther wherein the plurality
of display calls are associated with target applications.

US 2005/0246588 Al

22. The method of claim 20, further comprising capturing
text input to the target window by a user and wherein the
event includes the captured text.

23. The method of claim 20, further comprising updating
a capture state after each display call is processed.

24. The method of claim 23, wherein updating is in
response to a state change associated with a display element
of the target window.

25. The method of claim 20, further comprising deter-
mining whether to index the event.

26. The method of claim 20, wherein indexing and storing
the event takes place after terminating the target window.

27. The method of claim 20, wherein processing the
plurality of display calls to determine a target window
comprises analyzing one or more of the X,y coordinates,
lengths, and relative positions of a plurality of display items
written to the display using display calls and comparing
them with the stored target window profile.

28. A computer-readable medium containing program
code for capturing event data from a target window of a
target application in a computer system, comprising:

program code for comparing window information with a
target window profile associated with the target win-
dow of the target application; and

program code for capturing event data from the target
window upon detecting a state change of a state asso-
ciated with an element.
29. A computer-readable medium containing program
code for determining indexing events, comprising:

program code for receiving a plurality of display calls
associated with computer applications in a computer
system,

program code for processing the plurality of display calls
to determine a target window based on a target window
profile; program code for determining an event based at
least in part on data captured from the target window;
and

program code for indexing the data captured from the
target window and storing the event.
30. A method, comprising:

comparing application related data from applications
associated with windows executing in a computer sys-
tem with stored target application profiles associated
with a plurality of target applications;

subscribing to window creation events through an oper-
ating system in the computer system;

receiving window creation request information from an
application;

comparing the window creation request information with
the stored target application profiles;

establishing a hook with capture component code into
processes for each application matching to a target
application profile;

Nov. 3, 2005

comparing window element information for each process
of each target application with a plurality of stored
target window profiles associated with target windows
of the target applications;

monitoring state changes for states associated with dis-
play elements in windows matching a target window
profile;

capturing from each matched window event data into an
event associated with each matched window upon
detecting a state change of the monitored states,
wherein capturing comprises modifying application
behavior of the matched applications based on the
capture component code; and

completing the events associated with the matched win-
dows 1in response to closure of the matched window.
31. A method, comprising:

determining whether an application is an instance of a
target application by comparing application related
data from the application associated with a window
executing in a computer system with a target applica-
tion profile associated with a target application,
wherein the target application is configured to provide
a null string in response to a window text request;

establishing a hook with capture component code into a
processes for the application, the capture component
code configured to intercept messages between the
application and an operating system;

determining whether a window associated with the appli-
cation is an instance of a target window by comparing
window information from the window of the applica-
tion with a target window profile associated with the
target window of the target application;

monitoring state changes for states associated with dis-
play elements in the window;

capturing text within the window upon detecting a state
change of the monitored states, wherein capturing
comprises intercepting a window text request and pro-
viding the window text prior to the application respond-
ing to the window text request; and

indexing the captured text upon termination of the win-
dow.
32. A computer system for capturing event data from a
target window of a target application in a computer system,
the system comprising:

means for comparing window information with a target
window profile associated with the target window of
the target application; and

means for capturing event data from the target window
upon detecting a state change of a state associated with
an element.

