US 20050240489A1

a2 Patent Application Publication (o) Pub. No.: US 2005/0240489 A1l

a9 United States

Lambert

43) Pub. Date: Oct. 27, 2005

(54) RETAINING CUSTOM ITEM ORDER

(75) TInventor: Brian M. Lambert, Windham, NH

(US)

Correspondence Address:

FOLEY HOAG, LLP

PATENT GROUP, WORLD TRADE CENTER
WEST

155 SEAPORT BLVD

BOSTON, MA 02110 (US)

(73) Assignee: Onfolio, Inc., Cambridge, MA

(21) Appl. No.: 11/079,454

(22) Filed: Mar. 14, 2005

y

RESPOND TO USER'S
INDICATION TO
CAPTURE CONTENT

Related U.S. Application Data

(60) Provisional application No. 60/552,503, filed on Mar.
12, 2004.

Publication Classification

(51) Int. CL7 oo GOG6F 17/60
(52) US.ClL oo 705/26
(7) ABSTRACT

A Web-information manager stores items captured in Web
research. It displays groups of such items and enables the
user to move them around in the display so as to specify a
custom order. It retains a specification of that order not only
between times when the group is displayed but sometimes
also while the group is being displayed in a different order.
The user can therefore return to the custom order even after
employing a different order.

302

_—304

PASS TO DATAOBJECT
CONVERTER

y

_—306

A
INSPECT

OBJECT

/-308

DETERMINE DATA
TYPES CONTAINED IN
OBJECT

Y

310
/-

| PRESENTTOUSER |

RETURN

314

Patent Application Publication Oct. 27,2005 Sheet 1 of 16 US 2005/0240489 A1

- ONFOLIO
WINDOW

1

COMPUTER-READABLE ' |
MEDIUM | PROCESSOR —
12 14
A 4
SERVER

18

|

|
WEB
PAGES
16

FIG. 1

US 2005/0240489 A1

Patent Application Publication Oct. 27,2005 Sheet 2 of 16

¢ Old

%.nn(&&a@@

i e T L

1 50014 [BN1afjoil] jO S1Ja0Sy

P3IepY -5peI L UD JUaWeaidy

5371801 DUE SUSOUIMIDD
JEMIIC N jRUORIRUIDIUL

1u3jed-unayngy - SUSEPAQ
IUS304 U930y 30 SoHeWWnG o
AT
U129 UO SUOBPEY JUSISY ©
:sieaddy Jo SLINOD UMD ‘S
SUoBP9a €3 1ud99g ©
LI TOHESTs)
Udled HIOISIH PFIITPS o
JLN0D FWILENS »

SUBSPHAG [BPIANY 1Riapey

INHBO W pedt

“g¢
SAIL IO GZE - 15¢ 55 235 'SE N1 O PIIRIOALOIU} Soas AJRDAY, LOIIRIA00D JUBIRY DY 56T U]

‘s¢ an jo EpT g THT

BET 55 335 "RIQUINIOD JO IDLASIQ YT 10§ N0 DLISIY SIILIS PIHUN Y2 Uj 20 ‘NNOD (RIBP34 YL
40} Sjeaddy JO 1IN0D SIILIS PIUUN YL WO IIGRIIRAR MIIARS FARBUIRE 10 JTLITY Y ‘sieaddy
10 pIROQ §,30410 SIUIE4 B O pajeIdde oG Aew UOISIDAP IR ‘PIIB[R: §1 Lofiedydde ve §1

'SE 9L JO PTT - 835 "Asessayau S| uonesynads papriap e Ajuo ‘Aepol
$3SLD ISOL U "uonedjdde jualed @ o Lied s paanbas SeM |3DOLU @ ARdUOISIY UM (M 4'D)

LE I[BLL JO T RG JO BOT'T § 235 jusied 8 0] PAINUS S1 3 §i SUILIIIIP O) JILRLEXS € AG PIMBIASS
St uopUIAY mau PIDIR ue 103 uonedidde Jualed yoed ‘sucpeinbsy [L1PPIS JO IPOD B JO

ZE 33Ul 30 9 - T su1ed Ul pUnoj 3. ‘Siudied 03 Sujeriad ‘suoneinbas 511 SE SRIL JO 62 -1 §5 295
IO RewdpeLL pue JUIIed U3 S Sme| Judted Sunalsprupe yim pabseyd Aduabe jesapad syl

‘3POD SAIEIS DAUUN BYL JO 82 ML 0 (RJAECT § 835 "UORIPSPAL BAISAPK
FARY SLNOD |eiapad I DY A0 me| jusied [etapRd Fapun Isue ST uCUEMOC_tC_ ued

‘uopexdde jo 31ep Ul WOoL PInsesL
SJeRA Ajumml 3G {Ira UL 34 (S661T '8 SUR(11343 %00 YIlLa) UOISINOID DRPURLLR ayl 13pUf “6E

pue tuned - 7 Id8UD T I D LE ORLL ¢
SUORBINSdY 18:3p33
IS SE 3P0 SN ®
SIS jespod
FUSHIST TPy o
LORANISUL) SN
(eHIIRW (eI0pa4

$324N0S JO NUaL

|]

SEILJO ©ST § @95 "aJuUenss) O 318D UYI WO} PANSRIW "SILIA UIBIUIABS 0 POURE 2GEMBURL-UOU
© 103 panss) Aleusioy oM sausted L v punoy Aenbrun il BuAueduwoide (S4lNl) Avadold
RNI2|IBIVT O SIT3ASY PIIL|PU-SPLUL UD JUaWIO0V 343 AG PaIdLLIoId JUBWPLUBLIR 1UDIZL 8 O JOLd

‘siualed wueid pue ubiSap Jo; ‘uorIppe ut “epnasd
20V Judled BLYI 03 SUORIPPR 3uN30S 12nposd ApeW UBWING € SIINIBSU0D Teym o bupuelssapun
Bupuedxa 1Az us 03 pPaj sey ABopuydal Bubueyd ST BRI J6 10T § 295 "Sspoursw Huissado.d
pue “1a13ew Jo SUORISOdUIOD ‘SIONPOoId apeW URWNL ‘SIUIDBL ISALBA0ISID/SUORUIAUL JO SadAY

1erau3b Jno; 103 panss) ase swusted LAGN, YINS ST SRIL IO 0T - TOT B 935 'SMIeU SNongo ue
40 30U PUR INYISN *JaA0U 3G 25N YOIUIAUI UB PFIUIIEC 3G O 29PJO UY "apoD Sels vuu_:: ap
30 SE BALL U pUno} st S3URled BurLIBIWO3 28| JO ADOq UBLL BYL T SPT
"§TA 935 "SJOPAUL JO SELBA0ISID 341 1331ud 0 AWOLINE jo RS euonnINSUOD wu. tnc:
$$316u0D Aq paldeua 219M Sme| Jualed 'S AW JO POLISE PRI B 10§ UORUBALE 1O AIDADISID
S.J01UaAUl P BuiS 10 Bupnposd Lo $19{10 SPRPX 03 B SUI 203uUIAL LR JuRsD S3udled

MIIAIBAC UR :me| Judjed

ajeuop

BIOW W 3] Juoy LONIBHOD

anIpse uontuunge [Edag
TTranoge men —_—

TAIIA S141 UL CUF O3 FWa 00 se !2._.

US 2005/0240489 A1

Patent Application Publication Oct. 27,2005 Sheet 3 of 16

- &R{ioi
Wl 1577

.wmm.. DEIL U0 TU. By
2YI OUIPNDUY PE6T LIYS
KTIEC01g PIasnpa] o
:

3818811 PUP SUCIUAAUDY
[eHEY [RUCQEUIUL

1udled-unagngl - SuoEPea
TUSTES YIS33Y 30 SFERDUAS o
L)
JUaTRd UO SuOSPeq Yusiay o
sjeaddy JO SLINOD WD 'S @
STEORRed wased Jusday o
EUOIPaa

SLIROS WRLANS »
SLNSPIT [RIAINY 12503

GO Rewspesl

pue uased - Elerd .

SUREGO0EY 1605
"TSTNSE 9PpOD SN .
FOIMEIG (219P0F
S UCRRS TsPRIv #
UOIMInSUTD) SN
jeudIeN (eJapad

$32/N08 JO NUIW

i3

M.E’ .—m 9Lt - IS¢ mm 835 "9 oL O ﬂwum_OQ.vOuE sea [lgall UOREIIC00D JHATRY Y2 GL6T U]

‘SE IpLL Jo §5T ¥ THT

“PET 5Y 355 "@IGunioD §0 PLISIQ 343 40§ 1LN0D ISIT SIS PAIIA 343 L1 SO NN (eIapag ayY
10 seaddy JO LIN0D SARIS PAUUN TYI WOL SIGRIRAR MIIADI DAITBLISIR JO JYLEY Y ‘Sjesddy
$O pie0g $,3040 SIUvle4 L O3 pajeadde ag Aew UOISPAP 343 ‘pRoafas st uoneddde ue j1

= i

q

sases 1souj
LEBRLJO T 3
1 uoRY
LEBRILIO9 -
DO HeUr

IREY S

sJepd Arsamy
SRILIC 787 § 54
® 10; PaNSsy
lemdagatY] JO 5

I3y Judieg &
Bupueaxa U
pue ‘sexews
tessush snoj Joj
Jo j0u pue
30 SE BRIL Ul
&R a5
$5246u0) A
5, 101U

v8

08 — seersioeno
08 20 @

.}Nm \\\ .o

“san0%
ARPHES DR ARUX 454 €) SRG L 20 RALEA JC STAQNS Uy ()

.

{63y werRg B

ey €%

5 @mﬂm . . .va.ENw_@ PPy
T usfaimde) ¢ GO0 6

aon sw gay

paIeIap e Ajuo ‘Aepoy
OIS A (Y3 D)
] SIUMIBXD @ AG PIMIIAIL

- [oy jspes 50 2poD sy g0

15U 80 §0 9C-1 33 d85

. gm_mcu Kouabe esapas syl

925 "VORMPSLA] BASNIXI
Bases juswabuul juszeq

NP Y W pAINSEALY
jd papuswe a3 sepun 5T
30 pousd ajgemauas-uoy
pdwunioe (S4ryi) Aladoid
LWPUIWE 1S € OF O

p 10§ ‘uopippe Uy ‘apiaoid
00 10y o Buppuesssapun
aag ‘spolpaws Buissarosd
0ISIP/SLORLBALY JO SBOAY
§5 sas “aumeu sNOIAGO UE
] "9p0D STRIS PN Y2
35T I TUORMASUCD
5 jeuonninsue) S Japun
103 UOUIAGL 10 AIDAOISID
10uRAuE ue weib stused

m0ry 1N IAOD

(&) wrasay waed £,

€

s

US 2005/0240489 A1

Patent Application Publication Oct. 27,2005 Sheet 4 of 16

*8 9Y1 03 UPOM (Y

PO it ot TRl Bl

2] DU ST IS HUSERADD
BrHE393043 KLBCRT

oungees
(PRI UOIRB LAY ALY WIS

$Z67 BT
480 AR [POIININT
puBBiF M oy Burses

—— 88

—— 98

\om

_—C6

~a4ay Supoip Aq wio) uoneanbas @ Bupnpu
“Bunasp (UNULY pEOZ 9\ Busquasep 2amiPosq 9t o Ad0D ¥ UIIGO A U Aropag sanquiiig
d BSLAIUNOU u "
T panInG SoBD ety PUTE L ! v Bumemw ey fuoexlagons
057 '02-87 PRl “Guo-e1dq o1 38 gew-3 AQ 51 12EIUTI AL NOA 1z0s-£46 (£19) —
AULSTKIHT ASOIOHHDALOTE j0ud st Buppaye (3158 pue 88 uo OS[UoF ; ON
THL 1T JTHSHIGVT TWROTO DIIATIHOV Y1 SUSQUIALICD PUR SRR |RDOS "SIRUILLSS [QUONROBPR 5350y puR sexuelso
| wap011-ofs WA A SARNWIOT SICLIRA S PUR SIOMIRACT O PV08 JAAUBIOA © yEnosyL [r—
¢ Lianagay “hapuoy “smgy yBuAdo pue Spewspen fAE1 JuBIRd HoYsUY
sweA3 Sujwosdn ‘WIe0 BULLIZIUDD UoRRULIOJL pue SBIR JO SBURLIANE 4P Jo) NG
e pue sweiboud [euoaesnps Bupaosd ‘seuassayord Auadmd jenpsgaiu
40 uoneposse ue S (YidE) UORePROsSY Me JUSlEJ Unlsoy dYL

UOREIDOSSY MET JUTIEG HOISOY D3 0) BICI M

SHBUUWEY . SOMUO . DWOR

SEMRIESY . Wof . SYUT) . SGO(. Gaon . JEPUIE) .

. dioH AsKoT: 5 : =
X0j241-4 e}jiiZoy - uofejd08sy me] JUITey UOISOG Y] 0} SWOIIIM fa

Patent Application Publication Oct. 27, 2005 Sheet 5 of 16 US 2005/0240489 A1

FIND SEARCH
SPECIFICATION
FOR SUBJECT
PAGE

v (1%

KEY PAGE =
SUBJECT PAGE

"
P>

106 \
KEY PAGE = b
REFERRER PAGE
A

YES

IS KEY PAGE
DEEPER IN
NAVIGATION LOG?

KEY PAGE IS
A SEARCH-
RESULTS
PAGE?

A 4

RETURN NULL

110 112

RETURN
SEARCH SPEC

FIG. 5

Patent Application Publication Oct. 27, 2005 Sheet 6 of 16 US 2005/0240489 A1

202

"RESPOND TO USER'S
COMMAND TO
CAPTURE WEB PAGE

NO DOES WEB PAGE
' CONTAIN
EXECUTABLE
SCRIPT?

YES

~ 214
LOAD SOURCE AND
REFERENCE COPIES OF
WEB PAGE

A 4

STORE SOURCE COPY
LOCALLY

L —— 216

206
) v

SAVE LOCAL
COPY
208 |

A\ 4

GENERATE LIST
OF REFERENCES

EXECUTE SCRIPTIN |— 218
REFERENCE

|

\ 4

DOWNLOAD L— 210
REFERENCES

UPDATE LOCAL
| COPY »(_ RETURN

FIG. 6

Patent Application Publication Oct. 27, 2005 Sheet 7 of 16 US 2005/0240489 A1

RESPOND TO USER'S 302

INDICATION TO
CAPTURE CONTENT

_—304
PASS TO DATAOBJECT
CONVERTER

INSPECT OBJECT

308
¥ -

DETERMINE DATA
TYPES CONTAINED IN

OBJECT
310
v -
PRESENT TO USER
312 ™ ¥
SAVE

FIG. 7

US 2005/0240489 A1

Patent Application Publication Oct. 27,2005 Sheet 8 of 16

=

FEE

11 159E 0682 (@ ¥+ 8L

R v B viadlal i

sa34yQ [ed0 / WOPY

BuaRs 4938 WY PBPS A

i

1404

cov

o
E4

532.n0SaY THOJUO mw.b
ogoguo 13
uopaayo> we B

sawenN

wogagoD uew B

Em: a4y 3 oo @ és%m

‘01ppY

" BupIADId TS D)

(40502 pUe (B304
{015 SiqBURA,))
{7ads :0Ld5n &P

UonRR OGO
10701 ©I0AB)

40 @)s qam BOIO
WO PI0A0) @

ﬁ:m_c 2

i &\:,. tvma; m: ‘

ped

Patent Application Publication Oct. 27, 2005 Sheet 9 of 16 US 2005/0240489 A1

CHANGE
COLLECTION
FILE
502
v [~
OBTAIN LOCK ON ' POLL
COLLECTION COLLECTION
FILE
\ 504 _ 514
A 4
POPULATE ENTITY SELECT NEXT FILE TO
OBJECTS WITH BE MONITORED
FILE DATA
506
[518
REVISE ENTITY-
OBJECT HAS THAT FILE NO
CONTENTS CHANGED
508 SINCE LAST
4 POLL?
ADD ID'S OF '
REVISED ENTITIES YES 520
TO CHANGE '—501% ADD LOG ENTRIES TO
e SAME-MACHINE LOG
WRITE LOG AND <
REVISIONS TO Y 516
COLLECTION FILE | -
CAUSE UPDATE OF h'; gﬁﬁgg;‘;
COMPANION-FILE :
TIMESTAMP
[514 NO
RELEASE LOCK
FROM RETURN
COLLECTION FILE

A 4

CRETURN D) FIG. 9B

FIG. 9A

Patent Application Publication Oct. 27,2005 Sheet 10 of 16 US 2005/0240489 A1

POLL
ENTITY LOG

[

Y

HAS THAT FILE
CHANGED SINCE
LAST POLL?

YES 524 @
RETURN
SELECT NEXT

ENTRY

IS NEXT ENTRY IN
LIST OF OBJECTS TO
BE KEPT UPDATED?

YES Ve 528

UPDATE ENTITY
OBJECT ACCORDINGLY

FIG. 9C

Patent Application Publication Oct. 27,2005 Sheet 11 of 16

602

RESPONSE TO CREATE/EDIT
DOCUMENT

' v
DISPLAY DOCUMENT |— 604

Y 606
| ACCEPT TEXT INPUT |~
608

RECEIVE
ITEM CHOICE

US 2005/0240489 A1

624
/—

PART OF

CREATE SUB-PAGE |

DOCUMENT 2

| RECEIVE COMMAND |

626 ~, |
620 |\S\I(EELECT] [ACCEPT TEXT INPUT |
628
622) Y
=___+ [RECEIVE SAVE/OK |

» |
» | %

612 — !
| INSERT SUB-PAGE |

614 — i
| INSERT HYPERLINK |

616 — |
| SAVE |

A 4 630
COMPLETED

FIG. 10

US 2005/0240489 A1

Patent Application Publication Oct. 27,2005 Sheet 12 of 16

.am@@%qem

et at.t\t\)et..iix:..a{\i

969 ¥S9

uotstazud By Bundeduy UCRRSIBB| PUR SHM LC SIURAWSD pue ‘sushuBAUed e RusAY [BB0s ‘GiRURUYS BUONEINPE
33564 pUR $BZIUESIO 3} ‘SRBINNII DUR JICUIRATD JO PIEOT JOIUTIUA & LENDIYL “mel JENAGOD fuR ‘Me| RieWapen ‘w7l JUB1ed EUALRDLOD UOLRLIOIN PUR SERD
Jo 8buzyosaL IR 10) wrusy B pue SWRBs.d jeLoNEONPR BuPIod ‘sirUtissagaud Atsedoud emsepaili 40 UOREISCSSR UE 3 {¥1dB) UOREICSSY MeY JUBIeg UOISOE BYi

VO RIZDSSY MR JURIRG UOIB0f) 3yl ¢ BN

259 069 —

sbuipuig yo.ieasay juajed

"$IVUNDS ARDUDIIS ugex) SRUY LRI MR SUPIEC jO MRIAIFAD Uy I
SiueledInoge ey i1

CORPPTERY A ATTd
uCIsoR 3 03 dwonaM [y

us.n_..S; sjo0), ;

1aisy

qnd oijouQ - L HodsY g

88

98

29

US 2005/0240489 A1

Patent Application Publication Oct. 27,2005 Sheet 13 of 16

9l

c0.

S92 S5EPII S5 JO 15| INSUNPIONTT (T
DIEZ Nd NI S - SSYJ0 I YL £p

s e v

802

8L« §5% 30 NI BYL
peag Susyany

{2003 51 5% 40
AL SY] - WOINYTY
2pR3Q BUIYSHIGNd |10~

ms.m&%s,ﬁtﬁ@w

»ued
® 3% SJ9pRI PRy @
T, “RLIMNG RS Y)Y 55
sy Loy saut|peal sAe|dstp
- no_«ﬁ Bi3pey S5y
- aypuRdwiod s801geM
SIZPEAI SGY
. . .) . - jo3sfeasuRyduo) @
SMBU JURLICAW] JO NOA WUOJU PUB JRAODSID 2 #% gk
.pue weds juaasid 03 wWBYISAS uogeIndas PIdURADE UE $33210CIODU) J8]SUOWSMEN
H|e 30U SIBUL "JSISUOWSMBN WIIM H0Mm LBD SSY Jsoddns Juop ey s33is uaad
'55y Moddns 3ewn s6ojgem pue ssusqam Sugsie Lm uonesbequl i npwudiegs T
Buipueysino pue edusLedxs qam Jouadns B 543)J0 JBJSUOWSMEN JESMOIG qIM o
moA i Apdeup sunu jeyy so3ebaubbe sy pue ‘Dojgam 'smau € St IBISUOWSMBN s shan K5
apssanian £33

;
TSISUOWSMON ol

19]SUO SMON swap £
sapry B

wyivangy £

3

i

Patent Application Publication Oct. 27,2005 Sheet 14 of 16 US 2005/0240489 A1

802
RESPONSE TO SELECTION
OF ORDER TYPE

824 —
818 T g > __PROMPT
> CHANGES "--._YES ! :
el 0?2 T ¥
el et e \\(— 826
..................... NO__.-“"SAVE -,
\\ . ? ’ ”
_______________ \\I”
......... vYES 828
804 — " . e 1. SAVE i
MANUAL
ORDER ?
806 — YES
» RETRIEVE
MANUAL ORDER | 812 \
. - \ 4
808 —_ I SORT BY
SORT BY SELECTED
MANUAL ORDER TYPE
810 — v
DISPLAY »(RETURN
P FIG. 13A
ORGANIZE
v ~— 816
» UPDATE

818

NO

820 —__ YES 830
=

FIG. 13B

Patent Application Publication Oct. 27,2005 Sheet 15 of 16 US 2005/0240489 A1

902

RESPONSE TO
FINDING NEW ITEM
IN FEED

904

GENERATE CAPTURE
COMMAND

906 — ¢
DOWNLOAD AND STORE

908 — 4 909
ASSOCIATE UNREAD ‘
INDICATION G

FIG. 14A

910

RESPONSE TO SELECTION
TO READ UNREAD ITEMS IN
FOLDER

916
912 — 4
RESPONSE TO
GENERATE NAVIGATION
NEWSPAPER VIEW
918
914 v ' — ‘
NG HIGHLIGHT
UNREAD ITEMS 920 y
REMOVE
Y 915 UNREAD
END INDICATION

922
FIG. 14B m

FIG. 14C

US 2005/0240489 A1

Patent Application Publication Oct. 27,2005 Sheet 16 of 16

mm /;,

i

] 033 CreR ovaE; 2 .;E«n»fa,gﬁm BT LRSI Cfmmneng
M W GXG O DT O(rg WSE T M ATPUnG Pt i | e Seprnans o aton g [) hpAre puy
mm £ doys nod axes wgrs Sunaas ap REPOIRY AP TOL JT YOO SINES M STOTC) UG OF ¢ AN 0
i3 RN Py 10 aveg S PUF MOV $6 SXCID M 05 Enadng DTSR ik BunavinG
m 1590} 9101 SUlap Gaing aATIp 2.0 T W praas g B BREPEY §UDUTIOCY
ATEI) IR K3 1t oqope0) Tunrnreonsp 53 gam da (e o S 8&38?«5:«

AR AT e AR
& BUnsam I3 IuMpIg IV I oHOgUQ 395

9001

Y00}

2001 —

R s

B EIIRRY MY {3 R0 SRR L X C L TE 2o

e A]!
/ .,§a§tv}¥3§a}ﬂ§9§&§
ETE6T WO YRITRs s drraren o 1t ev kst rovsad sy ORI %1 g .&a,«a S sy

O IUrITNT O Adar ecsyiax ey Wi BUop usazy eatove) { BRI B - v 2 INES BTN
&F VBIY JTGOISLIIOLY

Pitw [PUOSIAE 0] SPATL SEY CLINAPAL HOSHOTEY IEIEIY MEN

PRIt AL SN (i S A

—— AT AR TSR e -
B IR P N S S ,-109.4&"‘.\‘.“'::3
N X

WO A - 1o L1 R0 sgan;&ui

TASABIDPOL] GO RGBS 0K 23 T WAL m
8@0»& PRz BAYS aary ool gy uoursdays 468.40 gy gacy &n«@m&wﬁt‘ TR 19 ST m

QWA O B 20NNy R TR A ey,
L e

SRR AR SO IR 1
A S0 20 PGS N SERICH [TRAQUN YOG I I ARIGRIALNY ©f 2ot sajeond £ g a.&&ﬂéc
s Bunferlap vooga gt sy o DUROAIE PO POMGNY (ARSI DI BNG | - ~55 A0 T e

& oA 8&«.%«.1.#/ RV ff»ﬁxvm A%

T iy ehosiicy

521 101 Donpray die W
snpmspany B3 ¢
wsipar, B3 4
€23 3PP OI CAP OWeM iy
R aevIseas ey €y
(rpmmonIag 5y
Syboyy s O3y
umdggs g ory P
i« i e
HOAAAD vron K
(Ps0rsm] Sen Peds Wiy
soap i My
(he) pmas Dagrany - i) Wi
(50} o B a
sevagevanng W 4

ﬁa&..!ésﬁceé \

gy wyn Ui
iy 075 o
wwigs s Ty
0/ heng 404 % Ui
wan 3o Pin
Eers vman Tk .
(1) o prem A
Senvnm T s
Wryerammng T o
1945 g Aw

8001

US 2005/0240489 A1l

RETAINING CUSTOM ITEM ORDER

CROSS-REFERENCE TO RELATED
APPLICATION

[0001] This application claims the benefit, and incorpo-
rates by reference the entire disclosure, of U.S. Provisional
Patent Application No. 60/552,503, which was filed on Mar.
12. 2004, by Charles J. Teague et al. for Onfolio. Addition-
ally, this application is related to U.S. patent applications
Ser. No. 10/ of Charles J. Teague for Local Storage
of Script-Containing Content, Ser. No. 10/ of Joseph
Mau-Ning Cheng for Sharing Collection-File Contents, Ser.
No. 10/ of Charles J. Teague for Search Capture, Ser.
No. 10/ of Donald A. Washburn for Unread-State
Management, and Ser. No. 10/ of Donald A. Wash-
burn for Editing Multi-Layer Documents, all of which were
filed on the same day as this application.

BACKGROUND OF THE INVENTION
[0002] 1. Field of the Invention

[0003] The invention concerns organizing information
from online and similar sources.

[0004] 2. Background Information

[0005] Online research has become a powerful tool for
obtaining information on virtually any topic. Search engines
provide an easy way to find information on Web pages.
While finding the information may be relatively straightfor-
ward, capturing, saving, and organizing the information for
later reference can be tedious. As a consequence, software
tools have been developed that configure a computer to act
as a Web-information manager, i.e., as a tool that performs
in an automated fashion many of the tasks that people doing
Web research had previously performed more manually.

[0006] To enable a user to select conveniently from large
numbers of available items, Web-information managers and
similar tools typically enable the user to organize the items
into groups, often called “folders,” and display only the
items in a selected group. The order in which a group’s items
are listed can also contribute to the user’s convenience in
selecting an item. So items are often listed alphabetically or
in the order in which they were received, or in accordance
with how recently they were accessed. Such ordering is
usually done automatically, possibly in response to a user’s
choice of available pre-existing ordering modes.

[0007] But it also is convenient for the user to specify a
custom order by moving individual items around in the
sequence; the user may want the items listed in accordance
with the order in which he plans to deal with them, for
example. So many tools also provide such a capability: they
receive user input that specifies an order, and they retain a
specification of the thus-specified order so that it can be used
for subsequent displays until the user requests a different
order.

SUMMARY OF THE INVENTION

[0008] I have invented a simple way of increasing the
utility of a custom-order-retention capability. Rather than
retain the custom-order specification only until the user
requests a different order, the Web-information manager or
other tool can retain it while the user employs a different

Oct. 27, 2005

order for the same group. This enables the user to, for
example, switch to an alphabetical order in order to find
quickly whether some named item is in the group and then
return to his order that gives the order in which he intends
to deal with the items. In some embodiments, the tool may
even retain specifications for more than one custom order so
that the user can switch back and forth between different
custom orders.

BRIEF DESCRIPTION OF THE DRAWINGS

[0009] The following figures depict certain illustrative
embodiments in which like reference numerals refer to like
elements. These depicted embodiments are to be understood
as illustrative and not as limiting in any way.

[0010] FIG. 1 is a schematic representation of compo-
nents of a system for use of the Onfolio application.

[0011] FIG. 2 is an illustrative screen shot showing an
Onfolio interface.

[0012] FIG. 3 is an illustrative screen shot showing a
capture dialog box.

[0013] FIG. 4 is an illustrative screen shot depicting
captured content.

[0014] FIG. 5 is a flow chart of a routine for determining
the search specification that ultimately resulted in reaching
a selected Web page.

[0015] FIG. 6 is a flow chart of a method of capturing web
pages containing executable script.

[0016] FIG. 7 is a flow chart of a method of determining
a format for contents selected to be captured.

[0017] FIG. 8 is a screen shot illustrating an interface for
selecting a format for the contents of FIG. 4.

[0018] FIGS. 9A-C are flow charts that illustrate a way to
propagate persistent-file changes among multiple client pro-
grams using the file’s contents.

[0019] FIG. 10 is a flow chart of a method of creating
and/or editing a multi-layer document.

[0020] FIG. 11 is a screen shot of a new document.
[0021] FIG. 12 is a screen shot of an activated document
pane.

[0022] FIGS. 13A and 13B are flow charts of a method of
storing a manual ordering of folder contents.

[0023] FIGS. 14A-C are flow charts that illustrate a
method for managing a feed service and displaying and
tracking unread items captured from the feed service, and

[0024] FIG. 15 is a screen shot of a “newspaper” view of
unread items.

DETAILED DESCRIPTION OF AN
ILLUSTRATIVE EMBODIMENT

[0025] To provide an overall understanding, certain illus-
trative embodiments of the invention will now be described;
however, it will be understood by one of ordinary skill in the
art that the embodiments described herein can be adapted
and modified without departing from the scope of the
invention.

US 2005/0240489 A1l

[0026] Overview

[0027] The invention here described finds particular appli-
cability in a Web-information manager. It will therefore be
described by reference to an embodiment that performs that
function. That embodiment is intended for so integrating
with a browser as to enable a user to collect, store, organize,
and share Web pages, pictures, text, and other material,
content, and/or information from the Web or other online
sources. That embodiment will be referred to herein as the
Onfolio™ Web-information manager, but the invention can
be employed in applications other than the Onfolio™ Web-
information manager.

[0028] FIG. 1 depicts a computer-readable medium 12
containing instructions that configure a processor or com-
puter 14 as a platform or interface that implements the
invention. The interface may be integrated with an internet
browser running on computer 14, which obtains Web pages
16 through a server 18 connected to a network 20, such as
the Internet, an intranet, a Wide Area Network (WAN), a
Local Area Network (LAN), or some other network.

[0029] The interface window 22 may be distinct from the
Internet browser; i.e., closing either the interface window or
an associated internet browser window may not necessarily
cause the other window to close. Further, the illustrated
embodiment allows for associating multiple internet brows-
ers with a given interface window while, at the same time,
multiple interface windows may be synchronized such that
an update and/or change to content in one interface window
may cause an update/change to other interface windows.
Further, although multiple Internet-browser windows may
be present, a user may configure the system so that only
selected ones of the Internet browsers are associated with a
given Interface window.

[0030] Capture

[0031] The illustrated embodiment enables a user to
retrieve, capture, and/or otherwise store collections of infor-
mation (“Onfolio™ collections”), and the retrieved and/or
captured information is associated with and/or appears in a
browser window associated with an Interface window. FIG.
2 is an illustrative screen shot of the interface 50. The toolbar
includes a button 52 for opening and closing a collection-
explorer pane 54. It also includes a button 56 for capturing
selected content shown in browser window 58. The URL for
the web page in window 58 is shown in address bar 60.
Collection-explorer pane 54 includes menu icons for File 62,
Edit 64, Publish 66, and Help 68. Clicking on an icon opens
the related menu. Pane 54 also includes folder pane 70 and
item-list pane 72. The locations of window 58 and panes 54,
70, and 72 are selectable by the user, and various configu-
rations can be contemplated, including a side-by-side con-
figuration and a tiled configuration.

[0032] The user may select data to capture from browser
window 58 (e.g., by right clicking on the window and
selecting the option to “capture to Onfolio” or by selecting
the window or objects in the window and clicking the
capture button 56). FIG. 3 is an illustrative screen shot
showing the appearance that the interface 50 assumes when
the user selects data to be captured. The user can operate the
illustrated embodiment to capture the selected content (a
web page and/or portion of a web page), metadata associated
with the web page (e.g., keywords, author, copyright infor-

Oct. 27, 2005

mation, comments, etc.), the URL associated with the web
page, and, when the web page is associated with a search
engine, the search engine’s identity and the search terms that
were used to obtain the search results.

[0033] Inresponse to the user’s request to capture content,
the illustrated embodiment opens a dialog box 74 that
provides several fields for user input. The name field 76 and
the comment field 78 enable the user to enter the name and
comment that will appear for this item in item list pane 72.
Selection buttons enable the user to choose whether the
system will download and save a local copy (80) of the
selected content or will provide a link (82) to the selected
content. Clicking the save button 84 causes the selected
action to be performed. The dialog box also enables the user
to designate a location (e.g., a folder) where an identifier of
the captured content can be maintained. The contents of the
folder, i.e., the identifiers for captured content, can be
visually presented to the user for later selection. Later
selection of the identifier causes the captured content or Web
page to be represented to the user.

[0034] In some embodiments, users can edit and/or pro-
vide comments to aid in identifying the captured item. Also,
some embodiments may provide a flag setting and/or other
indicator to be associated with the identifier and/or com-
ments. Selecting the identifier can result in the launching of
an application such as word processor or document reader
(e.g., Adobe, Word, etc.) associated with the selected con-
tent. At the user’s option, selection of the identifier can cause
either a locally stored version to be fetched or the remote
version to be down-loaded. As will be explained in more
detail later, the saved contents can be associated with a
search, and selection of the identifier can result in a re-
execution of the search associated with the content.

[0035] FIG. 4 is a screen shot that depicts a situation in
which the user has captured and downloaded local copies of
two web pages, shown as items 86 and 88 in item list pane
72. The user has saved the web pages in sub-folder 90, under
the main Sample folder 92, as shown in folder pane 70.
When the user selects a folder in folder pane 70, e.g.,
sub-folder 90, the contents of the folder, or items in the
folder, such as items 86, 88, are shown in the item list pane
72. Selecting an item displays the content corresponding to
the saved link or the corresponding locally stored content, as
shown in window 58.

[0036] Search-Term Capture

[0037] A typical browser-user behavior is to navigate
through a chain of pages of which each page after some root
page is linked to the previous page in the chain by a
hyperlink in the previous page. Very frequently, the root
page is one produced by a search engine such as Google in
response to a search specification submitted by the user. But
the chain can be long, and it is easy for a user to forget the
search specification that resulted ultimately in reaching a
given page.

[0038] So I have provided a capability that helps the user
identify the search specification through which he reached a
given page. Embodiments that provide this capability may
employ different approaches to doing so. For example, some
may, in response to a user’s designating a search-result page
as defining a search specification to be remembered, retain
that page’s URL (or the search specification inferred from it)

US 2005/0240489 A1l

so long as the hyperlink chain continues or some limit chain
length is reached. If such a search result remains—i.e., if the
hyperlink chain from the designated page has not been
broken—then the search specification if any for the currently
displayed page is the one thus retained. The Web-informa-
tion manager can be configured to respond to a user request
to display the specification thus associated with the currently
displayed page. And, if the user commands that the current
page be captured, the associated search specification can be
stored with it—possibly in response to an explicit user
request but preferably automatically—as an attribute that
can be retrieved and reviewed. Additionally, the search
thereby specified can be re-run.

[0039] Some other embodiments may take a similar
approach but, instead of requiring the user to specify the root
page before search-specification retention begins, monitor
all visited pages’ URLs for search strings and begin search-
specification retention in response to detection a search
string. This avoids imposing upon the user the need for
fore-sight in identifying search specifications that he may
thereafter want to remember. But it also imposes the burden
of inspecting each URL. So some embodiments may instead
simply retain the current hyperlink-chain root’s URL, inde-
pendently of whether that URL includes a search string
indicative of search-engine results, and wait until a search
specification is needed before determining whether the cur-
rent chain began with a search, whose specification can
therefore be associated with the current page.

[0040] The illustrated embodiment employs an approach
that is similar in principle to those just described but tends
to be more robust in practice. Each time the user navigates
to a new page through a hyperlink contained in a previous
page, it stores in a navigation log an entry that identifies the
hyperlink-including (“referrer”) page as well as the new
(referred-to™) page, to which the hyperlink referred. In the
illustrated embodiment, the identifiers are those pages’
URLs. Then, when the search specification associated with
a given page is needed, it finds the root of given page chain
by performing an operation that FIG. 5 depicts in a simpli-
fied manner.

[0041] As that drawing’s block 102 indicates, illustrated
embodiment searches the log in reverse chronological order
for an entry whose referred-to field contains an identifier of
the page of interest. If it finds such an entry, it adopts the
contents of that entry’s referrer field as the next page for
which to search, as blocks 104 and 106 indicate. In per-
forming that search, it begins with the entry before the one
that it just found, and it again searches in reverse chrono-
logical order.

[0042] If the search is not successful, then the page for
which it is searching is taken as the root of the search chain
that terminated in the page of interest. Now, because of size
limitations that some embodiments may impose on the log
data structure, there can be occasions in which that page is
not the root. The log may, for example, be implemented as
a circular list, in which the most-recent entries replace the
carliest ones when the list reaches its capacity, and the root
of the search chain may therefore have been deleted. Usu-
ally, though, the page not found as a referred-to page in the
log is indeed the root page, and, as block 108 indicates, the
illustrated routine determines whether that page is a search-
result page.

Oct. 27, 2005

[0043] Tt does this by inspecting the URL stored for that
page. If the URL is, for instance, http://www.google.com/
search?hl=en&q=onfolio, then the Web-information man-
ager can conclude that the search was performed by the
Google search engine and that the search parameter was
“onfolio.” As block 110 indicates, the routine’s result in that
case would be a search-specification object containing, for
example, the search-result page’s URL, the search param-
eters inferred from that URL, and the search engine’s
identity. In the typical case in which the search-specification
determination is triggered in response to a command to
capture a page, that search specification is stored as an
attribute of the captured page. In some cases, though, the
root page is not a search-result page. As block 112 indicates,
a null output would accordingly result, and a user requesting
the search specification associated with the captured page
would be told that there is none.

[0044] Capturing Script-Containing Pages

[0045] Because execution of a server-side Web-page script
(written in Javascript, for example) can modify a web page
when the web page is loaded in a browser, it can be difficult
to save an accurate copy of a web page. For example, the
script can insert a link into a page when the page is loaded
into a browser. If the resultant page is saved, the saved page
will contain not only the script that inserts the link, but also
the newly inserted link. If the page thus stored is displayed
again, then the link will appear twice. Server-side scripts can
also complicate things by modifying the current document to
include references to images or other resources that were not
originally referred to in the document but that must be
downloaded if local copies are to be stored of all resources
needed for the ultimate display.

[0046] FIG. 6 is a flow chart of a method for dealing with
this complication. The method begins 202 in response to a
user’s command to capture a web page. If the web page does
not contain executable script, as determined at 204, a local
copy of the web page is saved 206. A list of the references
contained in the web page is generated 208 and the refer-
ences are downloaded locally 210. The locally saved copy of
the web page is then updated 212 to point to the locations of
the locally downloaded references.

[0047] 1If the web page does contain executable script, a
source copy and a reference copy of the web page are loaded
214 in a non-visible browser window. The source copy is
stored 216 locally. The script is executed 218 in the refer-
ence copy but not in the source copy. A list of the references
contained in the potentially script-modified reference copy is
generated 208, the resource to which they refer are down-
loaded 210, and the locally stored copy is updated 212. In
this instance, the locally stored copy is the source copy, and
the update includes modifying the source copy’s references
to point to the locally stored versions of the referred-to
resources. The method then returns 220 to await the next
page capture command. When the user subsequently
requests the stored web pages, the script will result in the
intended display, and all resources will be locally available.

[0048] Content Capture

[0049] The user is not restricted to importing only whole
web pages. The illustrated embodiment enables the user to
select isolated elements for importation, including portions
of text, a file, a link to a file, an image, a copy of the web

US 2005/0240489 A1l

page, a link to the web page, an object, a resource, etc. FIG.
7 is a flow chart of a method for importing various elements
of a web page.

[0050] In response to a user’s selecting an object in a web
page 302, the selected object is passed 304 to a DataObject
Converter. The DataObject Converter inspects the object
306 and determines 308 the types of information or data the
object contains. For example, by parsing the HTML for the
object, the DataObject Converter determines whether the
HTML includes data for images, hyperlinks to other web
pages, hyperlinks to files, text selection, or other types of
data.

[0051] For each data type found, the DataObject Con-
verter presents 310 the user with the corresponding portion
of the object and a set of actions appropriate to the data type.
For example, FIG. 8 is a screen shot 400 that depicts a
situation in which the selected item is a hyperlink. The user
may be asked whether the selected information should be
saved as a hyperlink 402 or whether a local copy of such web
page should be stored 404. As FIG. 7°s block 312 indicates,
the content is saved in accordance with the user’s selection,
and the method returns 314.

[0052] Multi-Layer Documents

[0053] The illustrated embodiment can also be used to
create and modify multi-layer documents. When a document
is to contain an abundance of information, it can be useful
for the document to enable readers to get a high-level feel for
the contents of the document and then allow them to
“drill-down” into more-detailed information as necessary.
Websites provide a drill-down environment where users can
browse through information and drill-down into details by
clicking a hyperlink. Over the past few years, the wide-
spread use of the Internet has created an environment where
drill-down capability has become a well-understood model
for navigating through lots of information.

[0054] 1t has also become commonplace to store in a
single, “multi-layer” file all or part of the content of the
many files that usually make up a Web site and to present the
content in a fashion that matches that of the Web site. For
example, clicking on a link in one page may make another
page appear, but the file from which the other page is drawn
is the same as that from which the first page’s contents were
drawn. Also, the multi-layer files will often contain image
data that were stored in separate files in the original Web
site.

[0055] As provided herein, a document layer can be under-
stood to be a sub-page that is embedded within a document
and is displayed as a hyperlink until a user decides to “drill
down” into the document (e.g., selects the hyperlink). Each
layer of a document looks like a page (or set of sequentially
arranged pages) in the document, and each layer can have
resources (e.g., images) embedded directly into it and can
have hyperlinks to other layers within the document.

[0056] FIG. 10 is a flow chart of a method for creating/
editing a multi-layer document. The method begins 602 in
response to a user’s choosing to create a new document or
to edit an existing document, e.g., by choosing from the
menu displayed when File icon 62 (FIG. 2) is clicked on,
and/or by performing other actions similar to those for other
known text/document editors. When the user chooses to
create a new document, a new blank document having a

Oct. 27, 2005

generic title such as “Title” is displayed 604 in, e.g., window
58 of FIG. 2. If the document is being newly created, it is
a single-layer document until resources and/or pages are
embedded. When the user chooses to edit an existing docu-
ment, the existing document is displayed. As with known
text and document editors, text can be input to the document
606, such as by typing and/or cutting and pasting text from
other sources. Also, the title can be supplied or edited.

[0057] Depth (i.e., layers or sub-pages) can be added to a
multi-level document by the user’s use of drag-and-drop
and/or copy-and-paste operations on items, including
selected sections of text or saved Onfolio HTML objects.
For example, the user can drag and drop an item from item
list pane 72 of FIG. 4 to a location on the displayed page.
In response to the drag-and-drop operation, as indicated at
block 608, the method first determines 610 whether the
selected item is a section of text. For the HTML objects, the
response to such action causes the HTML page and all of its
sub-resources to be imported 612 into the multi-layer docu-
ment and inserts 614 a link to the newly embedded page into
the top-level page. In response to a “Save” action, e.g., by
choosing from the menu displayed when File icon 62 is
clicked on, the method saves the document 616 at a user-
selected location, using the title as the file name. The
document typically is saved in Mail HTML (MHT) format,
though other formats can be used. FIG. 11 illustrates a
screen shot of a new document in window 58 titled “Patent
Research Findings.” The document includes two links 650,
652 that result from dragging and dropping items 86 and 88
from item list pane 72 and further includes text 654, 656.
The dragging and dropping causes the resources referred to
by those links to be added to the MHT document. If such a
link is clicked on, the associated HTML page is drawn from
the MHT document and displayed.

[0058] Insome instances, the user choice made by the user
in FIG. 10’s operation 608 is that a section of text be
removed from a page and replaced with a link to it. This may
be done to eliminate information from a page that, although
of interest, interferes with the flow of the text. Block 610
represents branching on such a choice. If it is determined
618 that the section of text to be linked to is part of the
document, method 600 allows for the section of text to be
selected 620 and a command to create a new blank sub-page
to be issued 622, e.g., by the user’s right clicking on the
selected text and choosing the create command from a menu
of actions. A new sub-page containing the selected text is
inserted 612 into the document, and the selected text in the
document is replaced with a hyperlink to the sub-page.
When the section of text is not part of the document, a
selectable option/button and/or menu item, e.g., from the
menu opened by right clicking on the document, can execute
624 a command to create a new blank sub-page. A dialog
box can prompt 626 the user to enter the section of text for
the hyperlink. Upon receiving a “SAVE” or “OK” indication
from the user 628, the sub-page with the entered text is
inserted 612 as part of the document and a hyperlink to the
new sub-page is inserted 614 into the currently active page,
generally at the last position of the cursor. A sub-page can
also include links to other sub-pages. Method 600 ends 630
once the sub-page and link have been inserted.

[0059] For deleting or removing a sub-page, the user can
select the sub-page by name from a list of sub-pages, and/or
select a link to the sub-page in the document. Upon receipt

US 2005/0240489 A1l

of a command to delete a sub-page, the illustrated embodi-
ment scans the document (including all sub-pages) for
references to the selected sub-page to be deleted and
removes hyperlinks from the document and sub-pages that
point to the sub-page to be deleted. Such a scan can also be
performed when a document is saved so as to remove
sub-pages or layers that are no longer hyperlinked. Con-
versely, the user can select a link only for removal, in which
case the resource to which it refers is removed if the file
contains no other links to the referred-to resource.

[0060] The disclosed Web-information manager thus
enables a user to edit a multi-layer document that can
include pages and sub-pages, where sub-pages can further
include sub-pages. Sub-pages can be accessed using a select-
able hyperlink, although other selectable items can be used.
A list of all sub-pages, including their respective sizes, can
be presented to an author/user. For example, in the docu-
ment-viewing mode of FIG. 11, item list pane 72 can display
the sub-pages in the document. Sub-pages can be removed
from a document and hyperlinks can be automatically
updated to reflect the removed sub-page.

[0061] The illustrated embodiment includes an authoring
tool that provides users with an ability to observe the total
size of the document and the sizes of individual layer to
determine which layers take up the most space. FIG. 12 is
a screen shot that depicts a scenario in which a document
pane 702 has been activated. Document pane 702 includes
a listing of sub-pages in the document. For the illustrative
screen shot of FIG. 12, sub-pages 704 and 706 are shown.
The listing includes the sub-page’s title 708, size 710, and
source URL 712. For documents having large numbers of
embedded sub-pages, where the sub-pages can include mul-
tiple large images, the total size of the document, shown at
714 in FIG. 12, can become quite large, requiring large
storage capacities and/or making transmission difficult.
While large embedded sub-pages can be removed, e.g., by
using button 716, the illustrated embodiment provides for
converting an embedded sub-page to a linked object that is
stored at a new source location. When an embedded sub-
page is selected and button 716 is activated, the document’s
internal structure is updated such that the link to the sub-
page is converted to a link to the object to which the selected
sub-page was converted. When the document is subse-
quently read, the linked object can be automatically down-
loaded or retrieved from the source location as needed.

[0062] Manual Ordering

[0063] As previously described, the illustrated Web-infor-
mation manager enables a user to capture Internet resources
and organize them by placing them into folders. When the
contents of a folder are viewed, as in item list pane 72 of
FIG. 4, the system sorts the items contained in the folder
according to a pre-determined criterion, such as by date,
name, or other criterion associated with the items, as is
known in the art. As is also known, folders and/or their
contents can be ordered by performing drag-and-drop opera-
tions to obtain a customized order. For example, a favorites
list in a web browser can be so ordered, or “organized.”
Heretofore, though, a previous custom order has no longer
been available once a new order is chosen. For example,
only the latest organized favorites list can be viewed.
Similarly, a customized order is no longer available once one
of the pre-determined order types is chosen.

Oct. 27, 2005

[0064] In contrast, the illustrated Web-information man-
ager enables a user to specify a manual order and provide for
storing the specified manual order for future viewing. When
a user switches from the manually ordered view to another
sorted view and back again, the manual order specified by
the user is restored. FIGS. 13A and B are flow charts that
illustrate this behavior. The method of FIG. 13A begins 802
in response to a user’s selection of an order for viewing the
items in a folder, e.g., the order in which the items are
displayed in item list pane 72. The selection can include
choosing a menu item, button, or the like. In addition, the
selection can be initiated by selecting another folder for
viewing its contents, in that displaying the items for the
newly selected folder constitutes a new ordering of items. If
the selected type is a manual order 804, the stored manual
order is retrieved 806, the items are sorted 808 in accordance
with the manual order and displayed 810 to the user in the
sorted order. In a first instance, the manual order can be
defaulted to one of the pre-determined order types. If one of
the pre-determined order types is selected, i.e., the manual
order is not selected, the current order is sorted 812 accord-
ing to the selected pre-determined type and then displayed
810.

[0065] Using drag-and-drop and/or other known ordering
operations to reorganize 814 the listing, the display is
updated 816 as each such operation is performed. Sponta-
neously or, in some embodiments, in response to a prompt,
the user can give a save command 818 in response to which
the illustrated embodiment saves 820 a description of the
then-current updated order as the stored manual order. In one
embodiment, the save command is activated by the user’s
choosing an icon, button, menu item or the like. Optionally
and as shown in phantom in FIG. 13A, in response to
selection of an order for viewing, the system may determine
822 whether changes were made to the then-current order
since the last selection and, if so, prompt 824 the user for a
decision whether the changes should be saved. As blocks
826 and 828 indicate, the then-current changed order is
saved as the stored manual order if the user so chooses.

[0066] Shared Collections

[0067] When more than one client is using contents of the
same collection file, it is desirable for one client’s in-
memory representation of those contents to reflect changes
that the other processes may have made in the file. As will
be explained below, the illustrated embodiment provides
such a feature by having file-changing clients log their
changes and by having file-content-using clients repeatedly
poll those logs and update their copies of the contents that
have been changed. As will also be explained, the logging
and polling are performed in such a manner as to enable
change detection and resultant refreshing to be performed
with a granularity finer than that of the collection files.

[0068] A collection file can contain many types of data
from a web site, and it can therefore be quite large. But a
client will often deal only with small portions of a collection
file’s contents. To make it convenient to identify such
discrete portions, a client that is creating a collection file
treats the collection file’s contents as divided into “entities,”
which can be, for instance, images, text strings, lists, etc.,
and assigning them respective universally unique identifiers.
The particular way in which division into entities is per-
formed is not critical, but it is preferable that the division

US 2005/0240489 A1l

reasonably match the granularity with which a client will
tend to use the data. A client will tend to display, store, or
delete whole images, for instance, so a whole image would
typically be designated a single entity.

[0069] In any event, when a client thereafter needs to use
an entity, it allocates a volatile entity object in memory,
reads from the common storage facility the collection file
that contains the desired entity, and fills the entity object’s
fields with the entity’s data retrieved from the collection file.
Having thus read the entity data from persistent storage, the
client may rely on the resultant volatile entity object data for
an extended period of time. For instance, it may use it to
maintain a user display of that entity’s contents.

[0070] Now suppose that, while one client, Client A, is
thus displaying an entity’s data, another client, Client B,
revises the common-storage facility data that Client A’s
entity object is intended to reflect. Unless some action is
taken, Client A will end up displaying stale data. One
approach to making updates would be for the updating client
to interrupt each other client, or at least each other client that
is using the revised data, and alert it to the change. But this
approach is not particularly robust. The alerting mechanism
may be blocked by, e.g., a firewall, or some other factor may
defeat one client’s alerting the other. The illustrated embodi-
ment uses a mechanism that is more robust. Client B merely
writes a log that summarizes the changes so that other clients
can refer to the log from time to time in order to determine
whether their volatile entity objects need to be updated.

[0071] Although there are many ways of performing log-
ging without departing from the present invention’s teach-
ings, an advantageous approach is the one that the illustrated
embodiment employs, namely, that of performing the log-
ging at two levels. In the example, when Client B is to
change the collection file in which a captured collection is
stored, it obtains a write lock on the collection file, as FIG.
9A’s block 502 indicates. As block 504 indicates, it then
reads subsets of the file’s contents into memory and uses
them to populate corresponding entity objects. It makes the
desired changes in those objects, as block 506 indicates, and,
for each changed entity, adds a log entry that identifies the
entity and indicates whether the change was an update or a
detection. Block 508 represents that operation. It then writes
the updated contents, including the log, back into the col-
lection file, as block 510 indicates. The log thereby stored is
a fine-granularity log: it lists changes as the entity level.

[0072] Client B additionally logs a coarser granularity. It
does so by revising a companion file to reflect completion of
the collection-file revision. The revision causes the compan-
ion file’s operating-system-assigned “last-modified” times-
tamp to be updated, as block 512 indicates, and other clients
can thereby detect a change simply by reading that times-
tamp. As block 514 indicates, Client B additionally releases
the lock on the collection file. The reason why other clients
would use the separate, companion file’s timestamp for this
purpose rather than the timestamp of the collection file itself
is that, in the illustrated embodiment, Client B employs the
local operating system’s transaction-processing features to
enforce appropriate atomicity on the file operations, and the
collection file’s timestamp may in some circumstances be
changed before the transaction has been committed. To
avoid having other clients read the collection file in an
intermediate state, the file-changing client will change the

Oct. 27, 2005

companion file only when the transaction by which collec-
tion-file revision has been made has committed. The illus-
trated embodiment associates the companion file with the
corresponding collection file by giving it a name that differs
from the corresponding collection file’s only in its exten-
sion: if the collection file’s name is “foo.cfs,” for example,
the companion file may be named “foo.ctf~.”

[0073] As was stated above, the companion file’s purpose
is to enable other client processes to determine readily
whether changes have been made in the corresponding
collection file’s contents. In principle, a client that is using
a given collection file’s contents need only examine from
time to time the timestamps of the companion file associated
with that collection file, and, if the timestamp is no later than
the time at which it last read that file, there is no need to read
the collection file and consult its log.

[0074] In the illustrated embodiment, there is a division of
the polling labor among threads and processes to obtain
efficiencies when a given machine is executing more than
one client. A respective client process performs most of a
given client’s operations, but all clients on a given machine
obtain stored collection data by employing their respective
individual processes to make inter-process requests therefor
to a local common “server” process that runs on the same
machine. This process obtains the data, possibly by causing
the local operating system to fetch the data from a local disk,
but sometimes by having the request made to a remote file
server. And, as will be seen, this local server process also
performs part of the polling operation.

[0075] To appreciate the local server’s role in that polling
operation, it helps first to consider the local server’s role in
fetching data. The typical sequence by which an individual
client obtains data from a collection file begins with the
respective client process’s sending to the local server pro-
cess an Open message, which identifies a collection file and
indicates that the client process should be apprised if
changes to that file occur. Among the results of this request
is that the local server places that file on a list of files whose
changes it monitors, as will be explained in due course.
Having thus “opened” the collection file, the individual-
client process sends the server process a Load message,
which identifies an entity whose data the client is requesting.
The local server obtains the data and sends it to the indi-
vidual-client process, which accordingly populates a volatile
entity object with its contents. It also places that entity on a
process-local list of entity objects that it will attempt to keep
current. At some point, the individual-client process may
stop using the collection file’s contents, in which case it will
send the local server process a Close message, which
indicates that the individual-client process no longer needs
to be kept apprised of that file’s changes. If no other client
processes on the same machine have opened that file without
closing it, the local server responds by removing that col-
lection file from its list of collection files to monitor.

[0076] From time to time, the server process examines the
timestamps of the companion files that correspond to the
collection files it is monitoring, as FIG. 9B’s blocks 514 and
516 indicate. If a given companion file indicates that the
corresponding collection file has been updated since the
server process last read it, the server process opens that
collection file, reads its finer-granularity, entity-level log,
and places in a location accessible to the same-machine

US 2005/0240489 A1l

client processes a list of the entities that were changed since
the last such poll. (The server process can identify the entries
that have been made since the last poll by noting that their
positions in the log are beyond that of the previous end of the
log.) Blocks 518 and 520 represent that operation.

[0077] Also from time to time, each individual-client
process performs entity-level polling by reading the logs
thus made available since the last time it did such polling.
For each entity in the log that was changed since the last time
it polled, it determines whether that entity is in that process’s
list of entities that it needs to keep updated, and it makes any
necessary changes in its corresponding volatile entity
objects, as FIG. 9C’s blocks 522, 524, 526, and 528
indicate. Typically, the individual-client process performs
such polling in a thread separate from its main thread that is
using the entity objects; from the point of view of the main
thread, the objects automatically keep themselves updated.
As a consequence, displays and other features that a client
bases on collection-file contents get updated to reflect
changes that other clients have made in those files.

[0078] Unread-State Management

[0079] As described previously herein, many people
receive syndicated news or other web content by subscribing
to RSS feeds. A user agent monitors one or more web sites
and notifies a subscriber when an article or web page related
to user specified content is available. FIG. 14A is a flow
chart of a method that the illustrated Web-information
manager uses to manage such a feed service.

[0080] The method begins 902 when a user agent moni-
toring a feed finds a new item or items having content of
interest to the user. The agent generates 904 a capture
command that causes the system to download and store 906
the newly found items into a folder that the user has
designated for the feed. The capture and store is performed
generally as described with respect to FIGS. 2-4, but
without user interaction. The capture and store for the
described embodiment is performed automatically in a back-
ground mode. The user can specify more than one feed, and
each of the feeds can have its individual folder, or the user
can associate different feeds with one another by placing
them in the same folder. As previously described, folder
contents or items may have associated comments, flag
settings, and/or other indicators. An unread-state indication
is associated 908 with each captured item from a feed when
the item is first captured, and the method then ends 909.

[0081] FIG. 14B is a flow chart of a method for displaying
items from a feed. The method begins in response 910 to the
user’s selecting to read the unread items in a folder. It then
generates 912 a “newspaper view,” which, as will be illus-
trated below, displays 914 items having the unread-state
indication, including inline content and embedded resources
for the items, and the method ends 915.

[0082] FIG. 14C is a flow chart of a method for tracking
which item in the newspaper view is being read. As a user
navigates 916 through the items in the newspaper view by,
e.g., clicking on an item or using standard scroll bars and
up/down arrows, the Web-information manager monitors the
user’s input to determine which items the user is reading.
Specifically, if the user clicks on an item in the newspaper
display, or the cursor remains at one position in an item for
a predetermined duration, the Web-information manager

Oct. 27, 2005

treats the item as being read, and it highlights that item 918
or distinguishes it from other items in some other way, such
as by bolding the item and/or placing a border around it, as
an indication to the user that system has concluded that the
item is being read.

[0083] In further response to the user’s thus navigating to
an item, the unread-state indication is removed 920. The
method continues 922 to await further page captures, selec-
tion of the newspaper view, and/or selection of an unread
item.

[0084] FIG. 15 is a screen shot 1000 that illustrates a
newspaper view of unread items 1002, 1004, and 1006
displayed in window 58. In folder pane 70, the Onfolio
folder 1008 is highlighted to identify the folder where the
displayed items are located. Since the newspaper view
displays all unread items in a folder, an item-list pane, such
as pane 72 of FIG. 4, need not be shown. By default, the
items are ordered by date, with more-recent items appearing
before less-recent items, although other order selections can
be made; items can be ordered by, e.g., subject, feed source,
etc. Each item includes a link to the feed page, e.g., link
1010 of item 1002, and includes the contents for that item,
including inline content, embedded resources, and other
content, such as text portion 1012 of item 1004, that were
downloaded from the feed. For the screen shot of FIG. 15,
the user has navigated to item 1002, so item 1002 is
highlighted and toolbar 1014 is displayed with that item.
Through the toolbar 1014, the user can choose to take
actions such as emailing or copying the item, adding com-
ments, setting a flag, etc. For the screen shot of FIG. 15,
toolbar 1014 also serves to distinguish item 1002 as the item
currently being read.

[0085] As described with relation to FIG. 14, once an item
is selected, the unread-state indication is removed. The item
continues to be displayed in the newspaper view until a new
view is chosen or the user chooses to remove read items
from the view. Remaining displayed items that have been
read are typically de-emphasized, e.g., by graying or ghost-
ing, to distinguish them from unread items, although other
way of doing so, such as highlighting, bolding, bordering,
etc., may be used instead or additionally. Optionally, read
items can be automatically removed from the view once the
user moves to another item in the view. Also optionally,
toolbar 1014 can include a provision that enables a user to
set a flag that marks a read item for further reference. Items
so marked are distinguishably displayed with unread items
in the “newspaper” view. When an item so marked is
selected, the user can use toolbar 1014 to unset the flag.

[0086] The embodiment described above provides advan-
tages over conventional presentations. For example, while
conventional “preview panes” sometimes found in email
applications display the full content of an item to the user,
such a preview pane is limited to a single item, so a separate
pane is needed to list the items, and the user needs to select
the item in the separate pane to get the preview plane to
display it. In conventional “auto preview” modes, all items
from a selected folder are shown, but only a limited amount
of text with limited formatting is displayed for each item,
and embedded images are not displayed. For conventional
displays of feed web pages, the full content is displayed for
all items, but the system does not identify the article being
read by monitoring actions taken on the display, so it cannot

US 2005/0240489 A1l

thereby keep track of which articles have been read. In
contrast, the newspaper view of the embodiment described
above has a single pane where all items are displayed,
including embedded resources. The user simply scrolls or
navigates through the items to view the items. As the user
navigates to an item, the item is highlighted or otherwise
distinguished to provide an indication of which item the
system is treating as being viewed.

[0087] Elements, components, modules, and/or parts
thereof that are described and/or otherwise portrayed
through the figures to communicate with, be associated with,
and/or be based on, something else, can be understood to so
communicate, be associated with, and or be based on in a
direct and/or indirect manner, unless otherwise stipulated
herein.

[0088] Although the methods and systems have been
described relative to a specific embodiment thereof, they are
not so limited. Obviously many modifications and variations
may become apparent in light of the above teachings. Many

Oct. 27, 2005

additional changes in the details, materials, and arrangement
of parts, herein described and illustrated, can be made by
those skilled in the art.

What is claimed is:

1. For presenting items on a display, a method compris-

ing:

A) displaying a group of items in an original order;

B) receiving input by which a user selects a displayed
item in a group thereof displayed in an order and
specifies a new position within the order for the
selected item to produce a custom order;

C) thereafter retaining a description of the custom order
while displaying the items in a subsequent order dif-
ferent from the custom order; and

D) in response to user input requesting the custom order,
displaying the items in accordance with the stored
description of the custom order.

#* #* #* #* #*

