US 20050055341A1

a2 Patent Application Publication o) Pub. No.: US 2005/0055341 A1l

a9 United States

Haabhr et al.

43) Pub. Date: Mar. 10, 2005

(549) SYSTEM AND METHOD FOR PROVIDING
SEARCH QUERY REFINEMENTS

(76) Inventors: Paul Haahr, San Francisco, CA (US);
Steven Baker, Mountain View, CA
(Us)

Correspondence Address:
PATRICK J S INOUYE P S
810 3RD AVENUE

SUITE 258

SEATTLE, WA 98104 (US)

(21) Appl. No.: 10/668,721

(22) Filed: Sep. 22, 2003

Related U.S. Application Data

(60) Provisional application No. 60/500,539, filed on Sep.

5, 2003.
10 12
Client
17 Memory
| | Browser/
19 18 N Reader
[
16 0 Processor
User
12 Client
17 ~Y Memory
19 18 N Browser/
1 Reader
|
16 ~\4 Processor
User
12 Client
17 ~ Memory
Browser/
19 18 N Reader
I
16 ~\{ Processor

User

Publication Classification

(51) Int. CL7 oo GOG6F 17/30
(52) US.CL oo 707/3
(7) ABSTRACT

A system and method for providing search query refine-
ments are presented. A stored query and a stored document
are associated as a logical pairing. A weight is assigned to
the logical pairing. The search query is issued and a set of
search documents is produced. At least one search document
is matched to at least one stored document. The stored query
and the assigned weight associated with the matching at
least one stored document are retrieved. At least one cluster
is formed based on the stored query and the assigned weight
associated with the matching at least one stored document.
The stored query associated with the matching at least one
stored document are scored for the at least one cluster
relative to at least one other cluster. At least one such scored
search query is suggested as a set of query refinements.

O

Search Database

Web
Content
15 ™
L_“/.._J
22
Server
Memory — Query Log 26
Web Server k—/
Search LA~ 21
Engine T T
v
1 Cache
Processor
S ~ Cached
11 Documents

Cached
Queries

US 2005/0055341 A1

Patent Application Publication Mar. 10, 2005 Sheet 1 of 11

sausnY
payoen)

™~ €2

sjuswnooQ
payoe)

L

S

10852301d

™~ €1l

|

9¢

e M

auibug
yoseas

1BAIBS gOM

an)

Aowap

SEINETS

TN
Bo Aend —
e
™~ Gl
Jusjuon
aam

aseqejeq yoless

e
—

10ss9201d o 9t
_
1opeay | |
pesmoig [|17 8l
foowapy [L
welo cl
10ssa%0id [91
_
lepesy
/19SMolg T 8t
faowspy [~ 44
welD ™ ¢l
108882014 (Yo 91
|
1apeay
/ilesmolg N 8k
fiowspy [} L+
sio
cl

lesn
61
lasn
61
lesn
61
-1 ainbi4

Patent Application Publication Mar. 10, 2005 Sheet 2 of 11 US 2005/0055341 A1

Figur 2.
30
39
s R A
T — 31 _//
R ’ 2 Association
Search Database : Precomputation Database
26 Query Log Systom Stored
~
32 "\ M .
27 N} Prev Queries emory. Queries
4 A Precomputation
34 Engine -)
B B 35174 Associator
3611 Selector
37 1T ~{Regenerator
3814 Inverter
Cached 33 | Processor 43~] Weights
Documents

Associations
42 -

Cached
Queries

Patent Application Publication Mar. 10, 2005 Sheet 3 of 11 US 2005/0055341 A1

Figure 3.
50 - |
59 . 51 ¥
Search Query Reiinement ’ é
Query System Association
50 ~ Memory Database

N Query
Search Refinement Stored
Documents Engine Queries

55 -T4W14 Matcher .

| Clusterer 40

| Scorer <::‘>
Stored
Documents |

|1 Presenter

J)

60 56
57 T

[[[7

Processor 41

a3~ | Weights

Associations|

42 -

Candidate

68 Refinements

Refinements

67

Scores
66
Centroids
65 -
Potential

Refinement
Clusters

64

Clusters

63

Term Vectors
62

Patent Application Publication Mar. 10, 2005 Sheet 4 of 11 US 2005/0055341 A1

Figur 4.

70

71 ™Y Precomputation

v

72 ™Y Query Refinement

Figure 5.

80
_ (PrecomputatioD

Reference Query
Sources

v

/ For each stored Y
82
query, do

Separately associate
stored query with each |~ 83
stored document

'

Assign weight(s) to
association(s)

v

K Next /* stgred /& 85
query */
C Return)

Patent Application Publication Mar. 10, 2005 Sheet 5 of 11 US 2005/0055341 A1

Figur 6. _ _ Reference Query
Sources,
- v
Issue search 91

'

Receive search results ™~ 92

'

Select query as stored

query
Select search document
chosenfromamong | | 94

search results as stored
document

(Return >
Reference Query
100 Sources,

Issue search N 101

v

Receive search results .~ 102

'

Select query as stored

Figure 7.

. 103
query
Select search results as L~ 104

stored documents

'

(Return >

Patent Application Publication Mar. 10, 2005 Sheet 6 of 11 US 2005/0055341 A1

Figur 8.

110
Reference Query
Sources,

Track previous queries
using query log

1

Select previous query as
. stored query

v

Regenerate previous
search results based on |~ 113
previous query

v

Select regenerated
search results as stored . 114
documents

A~ 111

112

Ye
° 115

No

(Return)

Patent Application Publication Mar. 10, 2005 Sheet 7 of 11 US 2005/0055341 A1

120
: Reference Query
Sources,

Cache documents and
queries as query- 121
document pairings

v

Invert query-document
pairings to document- (. 122

query pairings

]

Select inverted query as
stored query

v

Select inverted
documents as stored | 124
documents

Figur 9.

N 123

Yes

125

No

(Return)

Patent Application Publication Mar. 10, 2005 Sheet 8 of 11 US 2005/0055341 A1

Figur 10.

130 On-Line
Refinements

Issue search query | 131

Receive search results

N 132
and relevance scores

A

Match search results to
stored documents

" 133

y
Retrieve stored query and
assigned weight

" 134

A

Compute term vector
from terms in matched
stored queries and
corresponding weights

" 135

Normalize term vectors (L™ 136

Form clusters based on
distances of term vectors

v

Rank clusters by
relevance scores and [138
number of documents

" 137

A

Select highest ranking
clusters as potential ™ 139
refinement clusters

Patent Application Publication Mar. 10, 2005 Sheet 9 of 11 US 2005/0055341 A1

Figur 10 (Cont).

For each potential
refinement cluster, 140
do

A

Compute centroid N 141

A
Compute score for each

) 142
unique query
A
Select query with .hlghest L~ 143
score as name of cluster
145
Add name to set of ' Score > 144
refinements threshold?
No
A
Next /* potential
refinement 146

cluster */

v

Sort set of refinements (™ 147

A

Augment set of
refinements (optional)

" 148

A

Present refinements [149

A

< Return)

Figure 11.

160

167

0

Patent Application Publication Mar. 10, 2005 Sheet 10 of 11

Other
Refinements

A 4

US 2005/0055341 A1

Issue search query

" 161

4

Receive search results
and relevance scores

" 162

Form initial set of clusters
based on distances of

" 163

For each query
refinement, do

term vectors

\/‘ 164

Attempt to assign query

refinement to cluster

" 165

Add query refinement to
set of orthogonal queries

Assigned?

166

Next /* query
refinement */

For each
orthogonal query,
do

/Z/‘ 168

169

Issue search query

. 170

Patent Application Publication Mar. 10, 2005 Sheet 11 of 11 US 2005/0055341 A1

Figure 11 (Cont).

Receive search results

N 171
and relevance scores
Pool search results into A~ 172

second document set

v

Form second set of
clusters based on > 173
distances of term vectors

v

Form union of initial and
second sets of clusters

v

Name clusters U 175,

v

Present refinements |~ 176

E—
(")

N 174

US 2005/0055341 Al

SYSTEM AND METHOD FOR PROVIDING
SEARCH QUERY REFINEMENTS

CROSS-REFERENCE TO RELATED
APPLICATION

[0001] This non-provisional patent application claims pri-
ority under 35 USC § 119(e) to U.S. provisional patent
application Ser. No. 60/500,539, filed Sep. 5, 2003, the
disclosure of which is incorporated by reference.

FIELD OF THE INVENTION

[0002] The present invention relates in general to query
processing and, in particular, to a system and method for
providing search query refinements.

BACKGROUND OF THE INVENTION

[0003] Although the Internet traces back to the late 1960s,
the widespread availability and acceptance of personal com-
puting and internetworking have resulted in the explosive
growth and unprecedented advances in information sharing
technologies. In particular, the Worldwide Web (“Web”) has
revolutionized accessibility to untold volumes of informa-
tion in stored electronic form to a worldwide audience,
including written, spoken (audio) and visual (imagery and
video) information, both in archived and real-time formats.
In short, the Web has provided desktop access to every
connected user to a virtually unlimited library of information
in almost every language worldwide.

[0004] Search engines have evolved in tempo with the
increased usage of the Web to enable users to find and
retrieve relevant Web content in an efficient and timely
manner. As the amount and types of Web content have
increased, the sophistication and accuracy of search engines
have likewise improved. Generally, search engines strive to
provide the highest quality results in response to a search
query. However, determining quality is difficult, as the
relevance of retrieved Web content is inherently subjective
and dependent upon the interests, knowledge and attitudes
of the user.

[0005] Existing methods used by search engines are based
on matching search query terms to terms indexed from Web
pages. More advanced methods determine the importance of
retrieved Web content using, for example, a hyperlink struc-
ture-based analysis, such as described in S. Brin and L. Page,
“The Anatomy of a Large-Scale Hypertextual Search
Engine,” (1998) and in U.S. Pat. No. 6,285,999, issued Sep.
4,2001 to Page, the disclosures of which are incorporated by
reference.

[0006] A typical search query scenario begins with either
a natural language question or individual terms, often in the
form of keywords, being submitted to a search engine. The
search engine executes a search against a data repository
describing information characteristics of potentially retriev-
able Web content and identifies the candidate Web pages.
Searches can often return thousands or even millions of
results, so most search engines typically rank or score only
a subset of the most promising results. The top Web pages
are then presented to the user, usually in the form of Web
content titles, hyperlinks, and other descriptive information,
such as snippets of text taken from the Web pages.

[0007] Providing quality search results can be complicated
by the literal and implicit scope of the search query itself. A

Mar. 10, 2005

poorly-framed search query could be ambiguous or be too
general or specific to yield responsive and high quality
search results. For instance, terms within a search query can
be ambiguous at a syntactic or semantic level. A syntactic
ambiguity can be the result of an inadvertent homonym,
which specifies an incorrect word having the same sound
and possibly same spelling, but different meaning from the
word actually meant. For example, the word “bear” can
mean to carry or can refer to an animal or an absence of
clothing. A semantic ambiguity can be the result of improper
context. For example, the word “jaguar” can refer to an
animal, a version of the Macintosh operating system, or a
brand of automobile. Similarly, search terms that are too
general result in overly broad search results while search
terms that are too narrow result in unduly restrictive and
non-responsive search results.

[0008] Accordingly, there is a need for an approach to
providing suggestions for search query refinements that will
resolve ambiguities or over generalities or over specificities
occurring in properly framed search queries. Preferably,
such an approach would provide refined search queries that,
when issued, result in search results closely related to the
actual topic underlying the intent of the original search
query and provide suggestions that reflect conceptual inde-
pendence and clear meanings as potential search terms.

SUMMARY OF THE INVENTION

[0009] An embodiment provides a system and method for
creating query refinement suggestions. At least one search
document retrieved responsive to a query is matched to one
or more stored queries. The stored query is scored as a
potential query refinement suggestion.

[0010] A further embodiment provides a system and
method for providing search query refinements. A stored
query and a stored document are associated as a logical
pairing. A weight is assigned to the logical pairing. The
search query is issued and a set of search documents is
produced. At least one search document is matched to at
least one stored document. The stored query and the
assigned weight associated with the matching at least one
stored document are retrieved. At least one cluster is formed
based on the stored query and the assigned weight associated
with the matching at least one stored document. The stored
query associated with the matching at least one stored
document are scored for the at least one cluster relative to at
least one other cluster. At least one such scored search query
is suggested as a set of query refinements.

[0011] A further embodiment provides a system and
method for integrating query refinement candidates. At least
one search document retrieved responsive to a query is
matched to one or more stored documents associated with a
stored query and weight. At least one cluster is formed based
on the stored query and weight associated with each stored
document matched responsive to the query. At least one
further search document retrieved responsive to a candidate
query is matched to the one or more stored documents. At
least one further cluster is formed based on the stored query
and weight associated with each stored document matched
responsive to the candidate query. The at least one cluster
and the at least one further cluster are combined. The stored
query for the combined cluster relative to at least one other
cluster is scored as a potential query refinement suggestion.

US 2005/0055341 Al

[0012] Still other embodiments of the present invention
will become readily apparent to those skilled in the art from
the following detailed description, wherein are described
embodiments of the invention by way of illustrating the best
mode contemplated for carrying out the invention. As will be
realized, the invention is capable of other and different
embodiments and its several details are capable of modifi-
cations in various obvious respects, all without departing
from the spirit and the scope of the present invention.
Accordingly, the drawings and detailed description are to be
regarded as illustrative in nature and not as restrictive.

BRIEF DESCRIPTION OF THE DRAWINGS

[0013] FIG. 1 is a block diagram showing a system for
providing search query refinements, in accordance with the
present invention.

[0014] FIG. 2 is a functional block diagram showing a
precomputation server, in accordance with the present
invention.

[0015] FIG. 3 is a functional block diagram showing a
query refinement server, in accordance with the present
invention.

[0016] FIG. 4 is a flow diagram showing a method for
providing search query refinements, in accordance with the
present invention.

[0017] FIG. 5 is a flow diagram showing the routine for
performing precomputation for use in the method of FIG. 4.

[0018] FIGS. 6-9 are flow diagrams showing the routines
for referencing query sources for use in the method of FIG.
5.

[0019] FIG. 10 is a flow diagram showing the routine for
performing on-line query refinements for use in the method
of FIG. 4.

[0020] FIG. 11 is a flow diagram showing a routine for
integrating candidate query refinements for use in the
method of FIG. 4, in accordance with a further embodiment.

DETAILED DESCRIPTION

[0021] System Overview

[0022] FIG. 1 is a block diagram showing a system 10 for
providing search query refinements, in accordance with the
present invention. A plurality of individual clients 12 are
communicatively interfaced to a server 11 via an internet-
work 13, such as the Internet, or other form of communi-
cations network, as would be recognized by one skilled in
the art. The individual clients 12 are operated by users 19
who transact requests for Web content and other operations
through their respective client 12.

[0023] In general, each client 12 can be any form of
computing platform connectable to a network, such as the
internetwork 13, and capable of interacting with application
programs. Exemplary examples of individual -clients
include, without limitation, personal computers, digital
assistances, “smart” cellular telephones and pagers, light-
weight clients, workstations, “dumb” terminals interfaced to
an application server, and various arrangements and con-
figurations thereof, as would be recognized by one skilled in
the art. The internetwork 13 includes various topologies,
configurations, and arrangements of network interconnec-

Mar. 10, 2005

tivity components arranged to interoperatively couple with
enterprise, wide area and local area networks and include,
without limitation, conventionally wired, wireless, satellite,
optical, and equivalent network technologies, as would be
recognized by one skilled in the art.

[0024] For Web content exchange and, in particular, to
transact searches, each client 12 executes a Web browser 18
(“Web browser”), which preferably implements a graphical
user interface and through which search queries are sent to
a Web server 20 executing on the server 11. Each search
query describes or identifies information, generally in the
form of Web content, which is potentially retrievable via the
Web server 20. The search query provides search character-
istics, typically expressed as individual terms, such as key-
words and the like, and attributes, such as language, char-
acter encoding and so forth, which enables a search engine
21, also executing on the server 11, to identify and send back
search result documents, generally in the form of Web pages.
Other styles, forms or definitions of search queries and
characteristics are feasible, as would be recognized by one
skilled in the art.

[0025] The Web pages are sent back to the Web browser
18 for presentation, usually in the form of Web content titles,
hyperlinks, and other descriptive information, such as snip-
pets of text taken from the Web pages. The user can view or
access the Web pages on the graphical user interface and can
input selections and responses in the form of typed text,
clicks, or both. The server 11 maintains a search database 15
in which Web content 22 is maintained. The Web content 22
could also be maintained remotely on other Web servers (not
shown) interconnected either directly or indirectly via the
internetwork 13 and which are preferably accessible by each
client 12. In a further embodiment, the server 11 maintains
a cache 23 in which cached documents 24 and cached
queries 25 are maintained. The cache 23 associates each
cached document 24 with one or more cached queries 25 to
improve searching performance, as is known in the art.
Finally, in a still further embodiment, the search engine 21
maintains a query log 26 in which records of previous search
queries 27 are tracked.

[0026] The search engine 21 preferably identifies the Web
content 22 best matching the search characteristics to pro-
vide high quality Web pages, such as described in S. Brin
and L. Page, “The Anatomy of a Large-Scale Hypertextual
Search Engine” (1998) and in U.S. Pat. No. 6,285,999,
issued Sep. 4, 2001 to Page, the disclosures of which are
incorporated by reference. In identifying matching Web
content 22, the search engine 21 operates on information
characteristics describing potentially retrievable Web con-
tent. Note the functionality provided by the server 20,
including the Web server 20 and search engine 21, could be
provided by a loosely- or tightly-coupled distributed or
parallelized computing configuration, in addition to a uni-
processing environment.

[0027] Search queries can potentially be ambiguous or
lack generality or specificity. Such poorly-framed search
queries can be remedied through search query refinements,
which can be provided in response to search query issu-
ances. Search query refinements are generated and sug-
gested as a two-part operation. First, a search query is
associated with a search result document in a one-to-one
association and a weight is assigned to each search query-

US 2005/0055341 Al

search result document association, as further described
below with reference to FIG. 2. Second, the search query-
search result document associations and assigned weights
are matched to at least one new search query to form scored
clusters, as further described below with reference to FIG.
3. The clusters are projected from multi-dimensional space
based on constituent query terms and unique search queries
associated with any document in each cluster are scored. The
clusters are named based on the scoring, preferably by
highest scores. The named clusters are sorted and provided
as suggested refinements to the original search query.

[0028] The individual computer systems, including server
11 and clients 12, include general purpose, programmed
digital computing devices consisting of a central processing
unit (processors 13 and 16, respectively), random access
memory (memories 14 and 17, respectively), non-volatile
secondary storage, such as a hard drive or CD ROM drive,
network or wireless interfaces, and peripheral devices,
including user interfacing means, such as a keyboard and
display. Program code, including software programs, and
data is loaded into the RAM for execution and processing by
the CPU and results are generated for display, output,
transmittal, or storage. The Web browser 18 is an HTTP-
compatible Web browser, such as the Internet Explorer,
licensed by Microsoft Corporation, Redmond, Wash.; Navi-
gator, licensed by Netscape Corporation, Mountain View,
Calif.; or other forms of Web browsers, as are known in the
art.

[0029] Precomputation Server

[0030] FIG. 2 is a functional block diagram 30 showing a
precomputation server 34, in accordance with the present
invention. The precomputation system 31 builds a set of
associated queries and documents, preferably as an off-line
operation. The precomputation system 31 includes a pre-
computation engine 34, which associates a stored query 40
with a stored document 41 and assigns a weight 43 to each
association 42, as further described below with reference to
FIG. 5.

[0031] The precomputation system 31 builds and main-
tains the association database 39. The association database
39 stores the stored queries 40, stored documents 41, asso-
ciations 42, and weights 43, which are used by a query
refinement server to formulate and suggest query refine-
ments, as further described below with reference to FIG. 3.
In further embodiments, the precomputation system 31 also
references the query log 26, which is stored in the search
database 15, and the cached documents 24 and cached
queries 25, which are stored in the cache (both shown in
FIG. 1).

[0032] The precomputation engine 34 logically includes
four modules. Other logical arrangements and definitions of
functional modules are possible, as would be recognized by
one skilled in the art. First, an associator 35 associates a
stored query 40 with a stored document 41 and the stored
query-stored document pairing is maintained in the associa-
tion database 39 as a set of associations 42. Each stored
query 40 is associated with only one stored document 41,
although any given stored query 40 can be paired with one
or more stored documents 41 in a one-to-many relationship.
Each individual pairing is maintained as a separate associa-
tion 42 in the association database 39. However, the indi-
vidual pairings need not be explicitly stored in the form of

Mar. 10, 2005

associations 42 and can instead be logically recorded or
tracked, such as by using a mapping, table or other means for
matching stored queries 40 with stored documents 41, as
would be recognized by one skilled in the art.

[0033] The associator 35 also assigns a weight 43 to each
association 42. Each weight 43 estimates the relevance of
the stored document 41 to the associated stored query 40.
When multiple associations 42 for the same stored query-
stored document pairing occurs, the weights 43 for each of
the multiple associations 42 are summed. If query frequency
data is available, such as, for example, when a search query
59 is cached, the weight 43 is multiplied by the search query
frequency, that is, the number of times that the search query
59 has been issued.

[0034] Second, a selector 36 selects one or more of the
stored documents 41 for association with a stored query 40
based on an issued search. In the described embodiment, the
selector 36 selects the stored documents 41, which are each
separately associated with a stored query 40 based on either
a search document chosen following an issued search or
from a set of search results received for an issued search, as
further described below respectively with reference to
FIGS. 6 and 7.

[0035] Third, the regenerator 37 selects one or more of the
stored documents 41, which are each separately associated
with a stored query 40 based on the query log 26. In a further
embodiment, the regenerator 37 regenerates the search
results from previously tracked queries 27, as reflected in the
query log 26. The regenerator 37 selects the regenerated
search results as stored documents 41, which are each
separately associated with a previously tracked search query
27, as further described below with reference to FIG. 8.

[0036] Fourth, the inverter 38 selects one or more of the
stored documents, which are each separately associated with
a stored query 40 based on cached data. In a still further
embodiment, the inverter 38 evaluates the cached docu-
ments 24 and cached queries 25 and inverts the cached
document-cached queries pairings into cached query-cached
documents pairings. The inverter 38 selects the inverted
cached documents 24 as stored documents 41, which are
each separately associated with a cached query 25, as further
described below with reference to FIG. 9.

[0037] The individual computer system, including the
precomputation system 31, include general purpose, pro-
grammed digital computing devices consisting of a central
processing unit (processor 33), random access memory
(memory 32), non-volatile secondary storage, such as a hard
drive or CD ROM drive, network or wireless interfaces, and
peripheral devices, including user interfacing means, such as
a keyboard and display. Program code, including software
programs, and data is loaded into the RAM for execution
and processing by the CPU and results are generated for
display, output, transmittal, or storage. Note the functional-
ity provided by the precomputation system 31 could be
provided by a loosely- or tightly-coupled distributed or
parallelized computing configuration, in addition to a uni-
processing environment.

[0038] Query Refinement Server

[0039] FIG. 3 is a functional block diagram 50 showing a
query refinement system 51, in accordance with the present
invention. The query refinement system 51 formulates and

US 2005/0055341 Al

suggests one or more query refinements 67. The query
refinements can be formulated either as an on-line operation
following a search query issuance or based on precompu-
tations for a given set of search queries. The query refine-
ment system 51 includes a query refinement engine 54,
which formulates the query refinements 67 as suggestions in
response to an actual search query 59, as further described
below with reference to FIG. 10, and which integrates
candidate query refinements 68, as further described below
with reference to FIG. 11.

[0040] The query refinement engine 54 logically includes
four modules. Other logical arrangements and definitions of
functional modules are possible, as would be recognized by
one skilled in the art. First, a matcher 55 matches one or
more of the stored documents 41 to the actual search
documents 60, generated by the search engine 21 (shown in
FIG. 1) in response to the issuance of a search query 59. The
search engine 21 also generates relevance scores 60 as part
of the search query issuance. The matcher 55 identifies the
stored queries 40 and assigned weights 43 using the asso-
ciations 43 corresponding to the matched stored documents
41.

[0041] Second, a clusterer 56 forms one or more clusters
62 based on term vectors 62 formed from the terms occur-
ring in the matched stored queries 40 and corresponding
weights 43. The term vectors 62 are normalized vectors
projected into multi-dimensional space, with each dimen-
sion corresponding to a term, which can be an individual
word or word combination. The clusters 62 are ranked based
on the relevance scores 61 assigned to the search documents
60 corresponding to the matched stored documents 41 and
the number of stored documents 41 occurring in each cluster
62. The highest ranking clusters 62 are selected as potential
refinement clusters 64. In the described embodiment, the
clusters 62 are formed using a hierarchical agglomerative
clustering algorithm, such as described in E. Rasmussen,
“Clustering Algorithms,” in “Information Retrieval,” (W.
Frakes & R. Baeza-Yates eds. 1992), the disclosure of which
is incorporated by reference, although other types of clus-
tering algorithms could be used, as would be recognized by
one skilled in the art.

[0042] Third, a scorer 57 computes center-weighted term
vectors, referred to as centroids 65, which each represent the
weighted center of the term vector 62 of each cluster 63. The
centroids 65 are computed from each of the potential refine-
ment clusters 64. The scorer 57 assigns scores 66 to each
unique search query in each of the potential refinement
clusters 64 based on the number of stored documents 41 with
which the search query is associated and the distance from
the centroid 65. Other approaches to computing centroids 65
could also be used, including using unweighted values and
by varying the forms of weighting and averaging, as would
be recognized by one skilled in the art.

[0043] Finally, a presenter 58 identifies the substantially
highest scoring search queries as one or more query refine-
ments 67 to the user 19. Importantly, the details of the
formulation of the search query refinements, including the
term vectors 62, clusters 63, potential refinement clusters 64,
centroids 65, and scores 66, are encapsulated by the query
refinement engine 54. Thus, a user 19 will only be aware of
the actual suggested query refinements 67.

[0044] The individual computer system, including the
query refinement system 51, include general purpose, pro-

Mar. 10, 2005

grammed digital computing devices consisting of a central
processing unit (processor 53), random access memory
(memory 52), non-volatile secondary storage, such as a hard
drive or CD ROM drive, network or wireless interfaces, and
peripheral devices, including user interfacing means, such as
a keyboard and display. Program code, including software
programs, and data is loaded into the RAM for execution
and processing by the CPU and results are generated for
display, output, transmittal, or storage. Note the functional-
ity provided by the query refinement system 51 could be
provided by a loosely- or tightly-coupled distributed or
parallelized computing configuration, in addition to a uni-
processing environment.

[0045] Method Overview

[0046] FIG. 4 is a flow diagram showing a method 70 for
providing search query refinements, in accordance with the
present invention. The method 70 is described as a sequence
of process operations or steps, which can be executed, for
instance, by the precomputation engine 34 of FIG. 2 and the
query refinement engine 54 of FIG. 3, or equivalent com-
ponents.

[0047] The method 70 performs precomputation (Block
71) and query refinement (Block 72). Precomputation
(Block 71) builds the association database 39 (shown in
FIG. 2) by associating and storing representative stored
queries 40 with stored documents 41, along with associa-
tions 42 and weights 43, as further described below with
reference to FIG. 5. In the described embodiment, precom-
putation is performed as an off-line operation independent of
any specific search query.

[0048] Query refinement (Block 72) formulates query
refinement suggestions structured to better frame search
queries posted by users. In one embodiment, the query
refinement suggestions are performed as an on-line opera-
tion based on search query results observed for issued search
queries, which can be matched and applied to the data
maintained in the association database 39, as further
described below with reference to FIG. 10. In a further
embodiment, candidate query refinements 68 can be inte-
grated into query refinement suggestions, which can also be
matched and applied to the data maintained in the associa-
tion database 39, as further described below with reference
to FIG. 11.

[0049] The method terminates upon the completion of the
last query refinement operation.

[0050] Precomputation Routine

[0051] FIG. 5is a flow diagram showing the routine 80 for
performing precomputation for use in the method 70 of FIG.
4. The purpose of this routine is to build the association
database 39 (shown in FIG. 3) and associate stored queries
40 with stored documents 41 to form associations 42 and
assign weights 43.

[0052] Initially, query sources are referenced to build the
stored queries 40 and stored documents 41 maintained in the
association database 39. Briefly, query source referencing
refers to identifying appropriate pairings of search queries
and search result documents based on actual search query
issuances, including current, stored and cached search query
issuances. Thus, the stored queries 40 can originate from
actual search queries, as further described below with ref-

US 2005/0055341 Al

erence to FIGS. 6 and 7, previous search queries 27 tracked
in the query log 26, as further described below with refer-
ence to FIG. 8, and cached queries 25 maintained in the
cache 13, as further described below with reference to FIG.
9. In addition, the stored documents 41 can be search
documents 60 retrieved in response to actual search queries
59, or can be regenerated search results or cached documents
24 maintained in the cache 13. Other sources of search
queries and documents for association as stored queries 40
and stored documents 41 are possible, as would be recog-
nized by one skilled in the art.

[0053] Once the stored queries 40 for the association
database 39 have been identified and stored, cach stored
query 40 is iteratively processed (Block 82), as follows. A
stored query 40 is separately associated with each stored
document 41 (Block 83). A one-to-one association 42 is
formed, provided, however, that each associated stored
document 41 is based on the issuance of the corresponding
associated stored query 40. Each stored query 40 is sepa-
rately associated with only one stored document 41,
although any given stored query 40 can be paired with one
or more stored documents 41 in a one-to-many relationship.
A weight 43 is assigned to the association 42 (Block 84),
reflecting the relevance of the stored document 41 to the
stored query 40. Processing continues with each remaining
stored query 40 (Block 85), after which the routine returns.

[0054] Query Source Referencing Routines

[0055] FIGS. 6-9 are flow diagrams showing the routines
for referencing query sources for use in the method 80 of
FIG. 5. The purposes of these routines are to populate the
stored queries 40 and stored documents 41 maintained in the
association database 39. Each of the routines identifies
search queries 59 and related search documents 60, respec-
tively for use as stored queries 40 and stored documents 41.

[0056] Each stored query 40 in an association 42 is
associated with a stored document 41, although any given
stored query 40 can be paired with one or more stored
documents 41 in a one-to-many relationship. Each indi-
vidual pairing is maintained as a separate association 42.
However, the individual pairings need not be explicitly
stored in the form of associations 42 and can be logically
recorded or tracked, such as by using a mapping, table or
other means for matching stored queries 40 with stored
documents 41, as would be recognized by one skilled in the
art.

[0057] In the association database, each of the stored
queries 40 take the form of a search query 59 expressed as,
for instance, keywords or terms. Terms include individual
words or combinations of words. Each of the stored docu-
ments 41 are preferably stored as references and not as
actual content. Generally, each stored document 41 can be in
the form of, by way of example, a uniform resource locator
(URL), hyperlink, anchor, or document excerpt.

[0058] Query Source Referencing Using a Chosen Search
Document

[0059] FIG. 6 is a flow diagram showing a routine 90 for
performing precomputation based on a chosen search docu-
ment. The purpose of this routine is to identify a one-to-one
pairing relationship between a search query 59 and a
selected search document 60. The one-to-one relationship
can occur, for instance, when a user 19 selects a particular

Mar. 10, 2005

search document 60 from among a set of search results
following the issuance of a search query 59.

[0060] First, a search query 59 is issued (Block 91) and
search results, consisting of search documents 60 (shown in
FIG. 3), are received (Block 92). The actual search query 59
is selected as the stored query 40 (Block 93). A search
document 59 is selected as a stored document 41, when the
search document 59 is chosen by the user 19 performing the
search from among the search results (Block 94). The
routine then returns.

[0061] Query Source Referencing Using Search Results

[0062] FIG. 7 is a flow diagram showing a routine 100 for
performing precomputation based on a search results. The
purpose of this routine is to identify a one-to-many pairing
relationship between a search query 59 and a set of search
results 60. The one-to-many relationship occurs when a set
of search results are identified following the issuance of a
search query 59.

[0063] The search is query issued (Block 101) and search
results, consisting of search documents 60 (shown in FIG.
3), are received (Block 102). The actual search query 59 is
selected as the stored query 40 (Block 103). The set of
search documents 59 are selected as stored documents 41
(Block 104). Note that each search query is separately
associated with only one search document and multiple
search query-search document associations can be formed
for any given search query. The routine then returns.

[0064] Query Source Referencing Using Tracked Queries

[0065] FIG. 8 is a flow diagram showing a routine 110 for
performing precomputation based on previously tracked
queries. The purpose of this routine is to reference the query
log 26 (shown in FIG. 1) for previous search queries 27 and
to regenerate search results based on those previously
tracked queries 27.

[0066] Initially, previous search queries 27 are tracked
using the query log 26 (Block 111). Each previous search
query 27 is selected as a stored query 40 (Block 112) and
search results based on the previous search query are regen-
erated (Block 113). The regenerated search results are
selected as stored documents 41 (Block 114). Note that each
previous search query is separately associated with only one
regenerated search result document and multiple previous
search query-regenerated search result document associa-
tions can be formed for any given previous search query. If
further previous search queries 27 remain in the query log 26
(Block 115), processing continues with the next previous
search query 27 (Block 112). Otherwise, the routine returns.

[0067] Query Source Referencing Using Cached Data

[0068] FIG. 9 is a flow diagram showing a routine 120 for
performing precomputation based on cached documents and
queries. The purpose of this routine is to invert pairings of
cached document-cached queries maintained in the cache 23
for use as stored queries 40 and stored documents 41.

[0069] Cached documents 24 and cached queries 25 are
maintained in the cache 23 (shown in FIG. 1). The cached
documents 24 and cached queries 25 are organized in the
cache 23 as cached query-cached document pairings. How-
ever, the associations 42 and weights 43 (shown in FIG. 3)
are based on stored document-stored query pairings. Thus,

US 2005/0055341 Al

the cached query-cached document pairings implicit in the
organization of the cache 23 are inverted to form cached
document-cached query pairings (Block 122). An inverted
search query is selected as a stored query 40 (Block 123) and
the corresponding inverted documents are selected as stored
documents 41 (Block 124). Note that each inverted search
query is separately associated with only one inverted docu-
ment and multiple inverted search query-inverted document
associations can be formed for any given inverted search
query. If further cached query-cached documents pairings
remain (Block 125), processing continues with the selection
of the next inverted pairing (Block 123). Otherwise, if no
further cached document-cached queries pairings remain
(Block 125), the routine returns.

[0070] On-Line Query Refinements Routine

[0071] FIG. 10 is a flow diagram showing the routine 130
for performing on-line query refinements for use in the
method 80 of FIG. 4. The purpose of this routine is to
formulate one or more search query refinements 67 prefer-
ably on-line, which can be suggested following an actual
search query 59 issuance.

[0072] Initially, a search query 59 is issued (Block 131)
and search results, in the form of search documents 60, and
relevance scores 61 are received (Block 132). If possible, the
stored documents 41 are matched to the search results
(Block 133). Ideally, at least one of the search results will
match a stored document 41. However, as the association
database 39 is preferably built as an off-line operation, the
set of stored documents 41 may not fully match every
possible search results. Accordingly, those search results,
which do not have a matching stored document 41, are
skipped.

[0073] Next, for each matched search result, the associa-
tion 42 corresponding to the matched stored document 41 is
determined and is used to retrieve the associated stored
queries 40 and weights 43 (Block 134). A term vector 62 is
then computed from the terms occurring in the matched
stored queries 40 and corresponding weights 43 (Block
135). Each term vector 62 is a vector in multi-dimensional
space, where each dimension corresponds to a distinct term
and each term represents an individual word or word com-
bination. The length of a term vector 62 in each dimension
equals the sum of the weights of the corresponding term in
the set of associated queries. Those term vector elements
corresponding to the terms from the original search query 59
are multiplied by a constant factor to downwardly weight the
terms to enforce independence from the original search
query 59. The term vectors 62 are normalized (Block 136).
In the described embodiment, the term vectors 62 are length
normalized to a length of one, although other normalizations
are possible, as would be recognized by one skilled in the
art.

[0074] Clusters 63 are then formed based on the distances
of the term vectors 62 from a common origin (Block 137).
In the described embodiment, the clusters 62 are formed
using a hierarchical agglomerative clustering algorithm,
such as described in E. Rasmussen, described supra., the
disclosure of which is incorporated by reference, although
other forms of clustering could also be applied, as would be
recognized by one skilled in the art.

[0075] The resulting clusters 63 are ranked using the
relevance scores 61 assigned to the search documents 60

Mar. 10, 2005

corresponding to the matched stored documents 41 and the
number of stored documents 41 occurring in each cluster 63
(Block 138). The highest ranking clusters are selected as the
potential refinement clusters 64 (Block 139). In the
described embodiment, the potential refinement clusters 63
are selected based on a predefined threshold value, although
other cluster selection criteria are possible, as would be
recognized by one skilled in the art.

[0076] For each potential refinement cluster 64 (Block
140), a centroid 65 is computed (Block 141). Each centroid
65 represents the weighted center of the term vector 62 for
each cluster 63, as a normalized sum of the product of the
term vector 62 for each stored query 40 and the relevance
score 61 assigned to the search documents 60 corresponding
to the matched stored documents 41 of the original search
query 59. Other approaches to computing centroids 65 could
also be used, including using unweighted values and by
varying the forms of weighting and averaging, as would be
recognized by one skilled in the art.

[0077] Ascore 66 is then computed for each unique search
query 59 occurring in the potential refinement cluster 64
(Block 143). Each score 66 is computed as the product of the
frequency of the stored query 40 for the cluster 63 times the
length of the distance vector measured from the term vector
62 of the stored query 40 to the centroid 65 of the cluster 63.
Other forms of scoring, ordering and ranking are possible, as
would be recognized by one skilled in the art. The stored
query 40 with the highest score 66 is selected as the name
of the cluster 63 (Block 143). Alternatively, other cluster
naming selection criteria using highest, averaged, lowest, or
other forms of scoring, ordering and ranking are possible, as
would be recognized by one skilled in the art. If the score 66
for the unique stored query 40 exceeds a predefined thresh-
old (Block 144), the name is added to the set of query
refinements 67 (Block 145). Processing continues with each
remaining potential refinement cluster 64 (Block 146).

[0078] Finally, the set of refinements 67 are sorted into
rankings (Block 147) as a function of the relevance scores 61
assigned to the search documents 60 corresponding to the
matched stored documents 41 appearing in each cluster 63
plus the size of the cluster 63 in number of stored documents
41. As an optional step, the set of refinements 67 are
augmented with supplemental queries (Block 148). In the
described embodiment, each supplemental query consists of
the terms originally appearing in the search query 59 and
negated forms of all terms appearing in the set of refine-
ments 67, but not appearing in the original search query.
Other forms of augmenting the set of refinements 67 are
feasible, as would be recognized by one skilled in the art.
The set of refinements 67 are presented (Block 149) based
on the rankings and, optionally, cluster scores. The routine
then returns.

[0079]

[0080] FIG. 11 is a flow diagram showing a routine 160
for integrating candidate query refinements for use in the
method 80 of FIG. 4, in accordance with a further embodi-
ment. The purpose of this routine is to formulate one or more
search query refinements 67, which can be suggested by
integrating candidate query refinements 68. The candidate
query refinements 68 can originate from any external source,
as would be recognized by one skilled in the art, including
the user 19 as user-specified query refinements, third parties,

Integrating Candidate Query Refinements Routine

US 2005/0055341 Al

and other approaches to attempting to remedy poorly-framed
search queries. For brevity, those detailed operations previ-
ously presented above with reference to FIG. 10 are
described in summary fashion where applicable.

[0081] By way of example, other approaches attempt to
remedy poorly-framed search queries by suggesting refine-
ments, which can be considered and selected by a user as an
adjunct to or in lieu of the original search query. One
approach suggests previous, recurring search queries, which
contain the terms used in the original search query, along
with other terms. However, the suggested queries can over-
lap in meaning with the original search query and word
co-occurrences and frequencies poorly divide the search
space into conceptually independent partitions. Another
related approach tracks search query refinements entered by
other users and suggests frequently-used refinements to
modify the original search query. However, reliance on only
frequently occurring refinements can also poorly divide the
search space into conceptually independent partitions. Yet
another related approach clusters documents received in
response to an original search query based on the terms
occurring in each document. The terms that characterize
each of the clusters are used as cluster names and suggested
as refinements. However, the resulting refinements often
consist of terms not generally occurring in a user-specified
search query and, as a result, can be difficult to understand
and can perform poorly when used as a search query.

[0082] Initially, as before, a search query 59 is issued
(Block 161) and search results, in the form of search
documents 60, and relevance scores 61 are received (Block
162). Following search results matching and term vector
computation and normalization, an initial set of clusters 63
is formed based on the distances of the term vectors 62
(Block 163). For each candidate query refinement 68 (Block
164), an attempt is made to assign the candidate query
refinement 68 to one of the clusters 63 (Block 165). If the
candidate query refinement 68 is not assigned to a cluster 63
(Block 166), the candidate query refinement 68 is added to
a set of orthogonal queries (Block 167). Processing contin-
ues with each remaining candidate query refinement 68
(Block 168).

[0083] Next, for each candidate query refinement 68 in the
set of orthogonal queries (Block 169), a search query 59 is
issued (Block 170) and search results, in the form of search
documents 60, and relevance scores 61 are again received
(Block 171). The search results are pooled into a second set
of documents (Block 172). Following search results match-
ing and term vector computation and normalization, a sec-
ond set of clusters 63 is formed based on the distances of the
term vectors 62 (Block 173). A union is formed of the initial
and second sets of clusters 63 (Block 174). Following cluster
ranking, potential refinement cluster 64 selection, centroid
65 computation, and unique query scoring, the clusters 63 in
the union are named for the unique queries with the highest
scores (Block 175). Finally, the set of refinements 67 are
presented (Block 149) based on the rankings and, optionally,
cluster scores. The routine then returns.

[0084] Query Refinement Example

[0085] By way of example, a user 19 might submit a
search query 59, which includes the individual word, “jag-
uar.” Upon issuance, a set of search documents 60 are
received and the top 100 documents are chosen for cluster-

Mar. 10, 2005

ing. Note a set of 100 documents is used merely for the
purposes of illustration and any other limit would be equally
suitable, as would be recognized by one skilled in the art.
The search documents 60 might naturally identify several
relevant semantic groupings, including documents about
automobiles manufactured by Jaguar Corporation, including
hyperlink references to the official Jaguar Corporation Web-
sites in the United States and United Kingdom and a Jaguar
brand automobile owners association. The semantic group-
ings might also include documents about the Macintosh
operating system version code-named jaguar, documents
about jaguar animals, as well as documents about a number
of other miscellaneous topics that may not be groupable into
cohesive document clusters 63.

[0086] During the clustering phase, term vectors 62 are
computed for each of the top 100 documents ranked by
relevance score. As above, a set of 100 documents is used
merely for the purposes of illustration and any other limit
would be equally suitable, as would be recognized by one
skilled in the art. Each selected search document 60 is
matched to a stored document 41 in the association database
39 and the corresponding stored queries 40 are determined
by looking up the associations 42 for each matched stored
document 41. The term vectors 62 are formed by flattening
the constituent terms for each corresponding stored query 40
into a simple vector space. Clusters 63 are generated from
the term vectors 62, which typically extracts the relevant
semantic groupings, such as those groupings described
above.

[0087] A cluster centroid 65 is calculated for each cluster
63. All search queries 59 associated with a search document
60 in the cluster 63 are scored according to the distance from
the cluster centroid 65 and the percent of stored documents
41 occurring in the cluster 63 with which each stored
document 41 is associated. For instance, assume that a
cluster 63 is calculated for the example “jaguar” search
query 59 for the semantic grouping containing documents
about Jaguar brand automobiles. In the corresponding clus-
ter centroid 65, the dominant terms include words, such as
“jaguar,”“automobile,”“auto,”car,”“USA,”UK,” and so
forth. The best matching query name suitable as a suggested
query refinement 67 would be “jaguar car,” which has good
coverage over the entire cluster 63 and also contains the two
terms having a highest weight in the cluster centroid 65.

[0088] Similarly, further assume that a cluster 63 is cal-
culated for the semantic grouping containing documents
about the Macintosh code-named jaguar operating system.
In the corresponding cluster centroid 65, the dominant terms
include words, such as “jaguar,”X,”Mac,”OS,” and so
forth. The best matching query name suitable as a suggested
query refinement 67, assuming case insensitivity, would be
“mac os X jaguar,” which contains all of the top search query
terms and appears in many of the documents in the cluster
63. Other generated clusters 63 and query names suitable as
suggested query refinement 67 include “jaguar racing” for
documents about Jaguar automobile racing clubs and “jag-
uar cat” for documents about the jaguar animal.

[0089] Finally, the refinements 67 are sorted as a function
of the relevance scores 61 assigned to the search documents
60 corresponding to the matched stored documents 41
appearing in each cluster 63 plus the size of the cluster 63
in number of stored documents 41. A cluster 63 will be

US 2005/0055341 Al

ranked higher than another cluster 63 if the cluster 63 is
either larger or has stored documents 41 having higher
relevance scores 61. In the example, the final ranking of the
refinements 67 includes “jaguar car,”“mac os X jaguar,

‘Jaguar racing,” and “jaguar cat.” The rankings and, option-
ally, cluster scores are used for presentation purposes.

[0090] In a further embodiment, the refinements 67 would
include negated forms of all terms appearing in the set of
refinements 67, but not appearing in the original search
query. Thus, the alternative refinements 67 include “jaguar
-car -mac-0s-X -racing -cat.” In a still further embodiment,
a predetermined set of search queries 59 selected from past
user queries could be used to precompute possible sets of
refinements 67 for the predetermined queries. The predeter-
mined queries would be issued and the search results would
be maintained in a database for look up in response to user
search requests based on the predetermined queries.

[0091] While the invention has been particularly shown
and described as referenced to the embodiments thereof,
those skilled in the art will understand that the foregoing and
other changes in form and detail may be made therein
without departing from the spirit and scope of the invention.

What is claimed is:
1. A system for creating query refinement suggestions,
comprising:

a matcher matching at least one search document
retrieved responsive to a query to one or more stored
queries; and

a scorer scoring the stored query as a potential query
refinement suggestion.
2. A system according to claim 1, further comprising:

a document matcher matching the at least one search
document to one or more stored documents associated
with the one or more stored queries.

3. A system according to claim 1, further comprising:

a weight associated with at least one such stored query;
and

a clusterer forming at least one cluster based on the stored
query and weight.
4. A system according to claim 3, further comprising:

a term vector used in cluster formation computed from
terms extracted from the stored query and based on the
weight for the stored query.

5. A system according to claim 4, further comprising:

a distance for the term vector; and

the cluster forming the at least one cluster relative to the
distance.
6. A system according to claim 3, further comprising:

a ranker ranking the at least one cluster relative to the at
least one other cluster by evaluating a relevance score
associated with each search document corresponding to
each matched stored document.

7. A system according to claim 6, further comprising:

a selector selecting at least one ranked cluster as a
potential refinement cluster.

Mar. 10, 2005

8. A system according to claim 3, further comprising:

a centroid computed as a weighted center of the at least
one cluster; and

a score computed for each stored query relative to the
centroid.
9. A system according to claim &, further comprising:

a selector naming the at least one cluster for at least one
scored stored query.
10. A system according to claim 1, further comprising:

a threshold applied to the stored scored query.
11. A system according to claim 1, further comprising:

a precomputation engine associating one or more stored
documents to the stored query based on at least one of
a chosen search document, a set of search documents,
regenerated previous search documents, and inverted
cached document and query pairings.
12. A method for creating query refinement suggestions,
comprising:

matching at least one search document retrieved respon-
sive to a query to one or more stored queries; and

scoring the stored query as a potential query refinement
suggestion.
13. A method according to claim 12, further comprising:

matching the at least one search document to one or more
stored documents associated with the one or more
stored queries.

14. A method according to claim 12, further comprising:

associating a weight with at least one such stored query;
and

forming at least one cluster based on the stored query and
weight.
15. A method according to claim 14, further comprising:

computing a term vector used in cluster formation from
terms extracted from the stored query and based on the
weight for the stored query.

16. A method according to claim 15, further comprising:

determining a distance for the term vector; and

forming the at least one cluster relative to the distance.
17. A method according to claim 14, further comprising:

ranking the at least one cluster relative to the at least one
other cluster by evaluating a relevance score associated
with each search document corresponding to each
matched stored document.

18. A method according to claim 17, further comprising:

selecting at least one ranked cluster as a potential refine-
ment cluster.
19. A method according to claim 14, further comprising:

computing a centroid as a weighted center of the at least
one cluster; and

computing a score for each stored query relative to the
centroid.

20. A method according to claim 19, further comprising:

naming the at least one cluster for at least one scored
stored query.

US 2005/0055341 Al

21. A method according to claim 12, further comprising:

applying a threshold to the stored scored query.
22. A method according to claim 12, further comprising:

associating one or more stored documents to the stored
query based on at least one of a chosen search docu-
ment, a set of search documents, regenerated previous
search documents, and inverted cached document and
query pairings.
23. A computer-readable storage medium holding code
for performing the method according to claim 12.
24. An apparatus for creating query refinement sugges-
tions, comprising:

means for matching at least one search document
retrieved responsive to a query to one or more stored
queries; and

means for scoring the stored query as a potential query
refinement suggestion.
25. A system for providing search query refinements,
comprising:

an associator associating a stored query and a stored
document as a logical pairing and assigning a weight to
the logical pairing;

a searcher issuing the search query and producing a set of
search documents;

a matcher matching at least one search document to at
least one stored document and retrieving the stored
query and the assigned weight associated with the
matching at least one stored document;

a clusterer forming at least one cluster based on the stored
query and the assigned weight associated with the
matching at least one stored document; and

a scorer scoring the stored query associated with the
matching at least one stored document for the at least
one cluster relative to at least one other cluster and
suggesting at least one such scored search query as a set
of query refinements.

26. A system according to claim 25, further comprising:

a selector selecting one such search document chosen
from among the set of search documents responsive to
the search query issuance as the at least one such search
document.

27. A system according to claim 25, further comprising:

a selector selecting the set of search documents as the at
least one such search document.

28. A system according to claim 25, further comprising:
a query log tracking previous search queries; and

a regenerator regenerating a set of previous search docu-
ments produced by the previous search queries as the at
least one such search document.

29. A system according to claim 25, further comprising:

a cache associating at least one cached document and one
or more cached queries as a cached pairing; and

an inverter inverting each cached pairing to associate at
least one cached query and one or more cached docu-
ments as the at least one such search document.

Mar. 10, 2005

30. A system according to claim 25, wherein relevancy to
the stored query is estimated for the stored document as the
weight assigned to the pairing.

31. A system according to claim 30, wherein each such
assigned weight for a plurality of pairings corresponding to
the stored query and the stored document is summed.

32. A system according to claim 25, wherein each stored
query comprises one or more terms, further comprising:

a term vector comprising the terms in the stored query
associated with the matching at least one stored docu-
ment;

a distance determined for the term vector; and

the clusterer forming the at least one cluster relative to the
distance.
33. A system according to claim 32, further comprising:

a normalizer normalizing the term vector.
34. A system according to claim 32, further comprising:

an evaluator computing a length of the term vector in
multi-dimensional space with each dimension equaling
a sum of the weights of the term in a set of associated
stored queries.

35. A system according to claim 32, further comprising:

a relevance score assigned to the at least one search
document; and

a ranker ranking the at least one cluster relative to the at
least one other cluster by the relevance score associated
with the matching at least one search document and a
number of the matching at least one search document.

36. A system according to claim 35, further comprising:

a selector selecting one of more of the ranked at least one
cluster as potential refinement clusters based on the
rankings.

37. A system according to claim 36, further comprising:

a centroid computed as a weighted center for each such
potential refinement cluster; and

the scorer scoring the stored query associated with the
matching at least one stored document for the potential
refinement cluster relative to the centroid.

38. A system according to claim 37, further comprising:

an evaluator computing the centroid as a normalized sum
of a product of the term vector for each stored query
and the relevance score associated with the matching at
least one search document.

39. A system according to claim 38, further comprising:

a length of a distance vector determined from the term
vector and the centroid; and

the scorer computing the score for the scored query as a
product of a number of stored documents with which
the stored query is associated and the distance vector
length.

40. A system according to claim 25, further comprising:

a selector selecting the stored query associated with the
matching at least one stored document relative to a
threshold.

41. A system according to claim 25, further comprising:

a sorter sorting the set of query refinements.

US 2005/0055341 Al

42. A system according to claim 25, further comprising:

a presenter presenting the set of query refinements.
43. A system according to claim 25, further comprising:

a set of supplemental query refinements negating each
term in the set of query refinements not present in the
search query and using the negated terms in combina-
tion with the search query as at least one supplemental
query refinement.

44. A system according to claim 25, further comprising:

an association database maintaining the pairings.

45. A system according to claim 25, wherein at least one
of each such stored document and each such search docu-
ment is specified as at least one of a Uniform Resource
Locator (URL), hyperlink, anchor, and document excerpt.

46. A method for providing search query refinements,
comprising:

associating a stored query and a stored document as a
logical pairing and assigning a weight to the logical
pairing;

issuing the search query and producing a set of search
documents;

matching at least one search document to at least one
stored document and retrieving the stored query and the
assigned weight associated with the matching at least
one stored document;

forming at least one cluster based on the stored query and
the assigned weight associated with the matching at
least one stored document; and

scoring the stored query associated with the matching at
least one stored document for the at least one cluster
relative to at least one other cluster and suggesting at
least one such scored search query as a set of query
refinements.

47. A method according to claim 46, further comprising:

selecting one such search document chosen from among
the set of search documents responsive to the search
query issuance as the at least one such search docu-
ment.

48. A method according to claim 46, further comprising:

selecting the set of search documents as the at least one
such search document.
49. A method according to claim 46, further comprising:

tracking previous search queries; and

regenerating a set of previous search documents produced
by the previous search queries as the at least one such
search document.

50. A method according to claim 46, further comprising:

associating at least one cached document and one or more
cached queries as a cached pairing; and

inverting each cached pairing to associate at least one
cached query and one or more cached documents as the
at least one such search document.

51. A method according to claim 46, further comprising:

for each such pairing, estimating relevancy to the stored
query for the stored document as the weight assigned to
the pairing.

10

Mar. 10, 2005

52. A method according to claim 51, further comprising:

summing each such assigned weight for a plurality of
pairings corresponding to the stored query and the
stored document.
53. A method according to claim 46, wherein each stored
query comprises one or more terms, further comprising:

computing a term vector comprising the terms in the
stored query associated with the matching at least one
stored document;

determining a distance determined for the term vector;
and

forming the at least one cluster relative to the distance.
54. A method according to claim 53, further comprising:

normalizing the term vector.
55. A method according to claim 53, further comprising:

computing a length of the term vector in multi-dimen-
sional space with each dimension equaling a sum of the
weights of the term in a set of associated stored queries.
56. A method according to claim 53, further comprising:

assigning a relevance score to the at least one search
document; and

ranking the at least one cluster relative to the at least one
other cluster by the relevance score associated with the
matching at least one search document and a number of
the matching at least one search document.

57. A method according to claim 56, further comprising:

selecting one of more of the ranked at least one cluster as
potential refinement clusters based on the rankings.
58. A method according to claim 57, further comprising:

computing a centroid as a weighted center for each such
potential refinement cluster; and

scoring the stored query associated with the matching at
least one stored document for the potential refinement
cluster relative to the centroid.

59. A method according to claim 58, further comprising:

computing the centroid as a normalized sum of a product
of the term vector for each stored query and the
relevance score associated with the matching at least
one search document.

60. A method according to claim 59, further comprising:

determining a length of a distance vector from the term
vector and the centroid; and

computing the score for the scored query as a product of
a number of stored documents with which the stored
query is associated and the distance vector length.

61. A method according to claim 46, further comprising:

selecting the stored query associated with the matching at
least one stored document relative to a threshold.
62. A method according to claim 46, further comprising:

sorting the set of query refinements.
63. A method according to claim 46, further comprising:

presenting the set of query refinements.
64. A method according to claim 46, further comprising:

negating each term in the set of query refinements not
present in the search query and using the negated terms

US 2005/0055341 Al

in combination with the search query as at least one
supplemental query refinement.
65. A method according to claim 46, further comprising:

maintaining the pairings in a database.
66. A method according to claim 46, further comprising:

specifying at least one of each such stored document and
each such search document as at least one of a Uniform
Resource Locator (URL), hyperlink, anchor, and docu-
ment excerpt.
67. A computer-readable storage medium holding code
for performing the method according to claim 46.
68. An apparatus for providing search query refinements,
comprising:

means for associating a stored query and a stored docu-
ment as a logical pairing and means for assigning a
weight to the logical pairing;

means for issuing the search query and means for pro-
ducing a set of search documents;

means for matching at least one search document to at
least one stored document and means for retrieving the
stored query and the assigned weight associated with
the matching at least one stored document;

means for forming at least one cluster based on the stored
query and the assigned weight associated with the
matching at least one stored document; and

means for scoring the stored query associated with the
matching at least one stored document for the at least
one cluster relative to at least one other cluster and
means for suggesting at least one such scored search
query as a set of query refinements.
69. A system for integrating query refinement candidates,
comprising:

a matcher matching at least one search document
retrieved responsive to a query to one or more stored
documents associated with a stored query and weight
and matching at least one further search document
retrieved responsive to a candidate query to the one or
more stored documents;

a cluster forming at least one cluster based on the stored
query and weight associated with each stored document
matched responsive to the query and forming at least
one further cluster based on the stored query and
weight associated with each stored document matched
responsive to the candidate query;

a combiner combining the at least one cluster and the at
least one further cluster; and

a scorer scoring the stored query for the combined cluster
relative to at least one other cluster as a potential query
refinement suggestion.

70. A system according to claim 69, further comprising:

a set of candidate query refinements comprising at least
one such candidate query.

71. A system according to claim 70, further comprising:

an evaluator assigning at least one such candidate query
to the at least one cluster.

Mar. 10, 2005

72. A system according to claim 71, further comprising:

a builder creating an orthogonal set of candidate query
refinements comprising at least one such unassigned
query candidate.

73. Amethod for integrating query refinement candidates,

comprising:

matching at least one search document retrieved respon-
sive to a query to one or more stored documents
associated with a stored query and weight;

forming at least one cluster based on the stored query and
weight associated with each stored document matched
responsive to the query;

matching at least one further search document retrieved
responsive to a candidate query to the one or more
stored documents;

forming at least one further cluster based on the stored
query and weight associated with each stored document
matched responsive to the candidate query;

combining the at least one cluster and the at least one
further cluster; and

scoring the stored query for the combined cluster relative
to at least one other cluster as a potential query refine-
ment suggestion.

74. A method according to claim 73, further comprising:

assembling a set of candidate query refinements compris-
ing at least one such candidate query.
75. A method according to claim 74, further comprising:

assigning at least one such candidate query to the at least
one cluster.
76. A method according to claim 75, further comprising:

creating an orthogonal set of candidate query refinements
comprising at least one such unassigned query candi-
date.
77. A computer-readable storage medium holding code
for performing the method according to claim 73.
78. An apparatus for integrating query refinement candi-
dates, comprising:

means for matching at least one search document
retrieved responsive to a query to one or more stored
documents associated with a stored query and weight;

means for forming at least one cluster based on the stored
query and weight associated with each stored document
matched responsive to the query;

means for matching at least one further search document
retrieved responsive to a candidate query to the one or
more stored documents;

means for forming at least one further cluster based on the
stored query and weight associated with each stored
document matched responsive to the candidate query;

means for combining the at least one cluster and the at
least one further cluster; and

means for scoring the stored query for the combined
cluster relative to at least one other cluster as a potential
query refinement suggestion.

#* #* #* #* #*

