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METHOD AND APPARATUS FOR
CHARACTERIZING DOCUMENTS BASED ON
CLUSTERS OF RELATED WORDS

RELATED APPLICATION

[0001] This application hereby claims priority under 35
U.S.C. §119 to U.S. Provisional Patent Application No.
60/416,144, filed on 03 Oct. 2002, entitled “Methods and
Apparatus for Probabilistic Hierarchical Inferential
Learner,” by inventors Georges Harik and Noam Shazeer
(Attorney Docket No. GOOGLE-00600).

BACKGROUND
[0002] 1. Field of the Invention

[0003] The present invention relates to techniques for
performing queries on textual documents. More specifically,
the present invention relates to a method and an apparatus
for characterizing a textual document based on clusters of
conceptually related words.

[0004] 2. Related Art

[0005] Processing text in a way that captures its underly-
ing meaning—its semantics—is an often performed but
poorly understood task. This function is most often per-
formed in the context of search engines, which attempt to
match documents in some repository to queries by users. It
is sometimes also used by other library-like sources of
information, for example to find documents with similar
content. In general, understanding the semantics of text is an
extremely useful subcomponent of such systems. Unfortu-
nately, most systems written in the past have only a rudi-
mentary understanding, focusing only on the words used in
the text, not the meaning behind them.

[0006] As an example, let us consider the actions of a user
interested in finding a cooking class in palo-alto, california.
This user might type into a popular search engine the set of
words “cooking classes palo alto”. The search engine then
typically looks for those words on web pages, and combines
that information with other information about such pages to
return candidate results to the user. Currently, if the docu-
ment has the words “cooking class palo alto” several of the
leading search engines will not find it, because they do not
know that the words “class” and “classes” are related,
because one is a subpart—a stem—of the other.

[0007] Prototype systems with stemming components
have been attempted but without any real success. This is
because the problem of determining whether a stem can be
used in a particular context is difficult. That might be
determined more by other nearby words in the text rather
than by the word to be stemmed itself. For example, if one
were looking for the James Bond movie, “for your eyes
only”, a result that returned a page with the words “for your
eye only” might not look as good.

[0008] In general, existing search systems and other such
semantic processing systems have failed to capture much of
the meaning behind text.

[0009] Hence, what is needed is a method and an appa-
ratus that processes text in a manner that effectively captures
the underlying semantic meaning within the text.

SUMMARY

[0010] One embodiment of the present invention provides
a system characterizes a document with respect to clusters of

Apr. 8, 2004

conceptually related words. Upon receiving a document
containing a set of words, the system selects “candidate
clusters” of conceptually related words that are related to the
set of words. These candidate clusters are selected using a
model that explains how sets of words are generated from
clusters of conceptually related words. Next, the system
constructs a set of components (such as a vector) to char-
acterize the document, wherein the set of components
includes components for candidate clusters. Each compo-
nent in the set of components indicates a degree to which a
corresponding candidate cluster is related to the set of
words.

[0011] In a variation on this embodiment, the model is a
probabilistic model, which contains nodes representing ran-
dom variables for words and for clusters of conceptually
related words.

[0012] In a further variation, each component in the set of
components indicates a degree to which a corresponding
candidate cluster is active in generating the set of words.

[0013] In a further variation, nodes in the probabilistic
model are coupled together by weighted links. If a cluster
node in the probabilistic model fires, a weighted link from
the cluster node to another node can cause the other node to
fire.

[0014] In a further variation, if a node has multiple parent
nodes that are active, the probability that the node does not
fire is the product of the probabilities that links from the
active parent nodes do not fire.

[0015] In a further variation, the probabilistic model
includes a universal node that is always active and that has
weighted links to all cluster nodes.

[0016] In a variation on this embodiment, the system
selects the candidate clusters by constructing an evidence
tree. This involves starting with terminal nodes associated
with the set of words, and following links in the reverse
direction to parent cluster nodes. The system uses this
evidence tree to estimate a likelihood that each parent cluster
node was active in generating the set of words. The system
subsequently selects a parent cluster node to be a candidate
cluster node based on its estimated likelihood.

[0017] In a variation on this embodiment, estimating the
likelihood that a given parent node is active in generating the
set of words may involve considering: the unconditional
probability that the given parent node is active; conditional
probabilities that the given parent node is active assuming
parent nodes of the given parent node are active; and
conditional probabilities that the given parent node is active
assuming child nodes of the given parent node are active.

[0018] In a further variation, considering the conditional
probabilities involves considering weights on links between
nodes.

[0019] In a further variation, estimating the likelihood that
a given parent node is active in generating the set of words
involves marking terminal nodes during the estimation pro-
cess to ensure that terminal nodes are not factored into the
estimation more than once.

[0020] In a further variation, constructing the evidence
tree involves pruning unlikely nodes from the evidence tree.



US 2004/0068697 Al

[0021] Ina variation on this embodiment, during construc-
tion of the set of components, the degree to which a
candidate cluster is active in generating the set of words is
determined by calculating a probability that a candidate
cluster is active in generating the set of words.

[0022] 1Ina variation on this embodiment, during construc-
tion of the set of components, the degree to which a
candidate cluster is active in generating the set of words is
determined by multiplying a probability that a candidate
cluster is active in generating the set of words by an
activation for the candidate cluster, wherein the activation
indicates how many links from the candidate cluster to other
nodes are likely to fire.

[0023] In a variation on this embodiment, constructing the
set of components involves normalizing the set of compo-
nents.

[0024] 1In a variation on this embodiment, constructing the
set of components involves approximating a probability that
a given candidate cluster is active over states of the proba-
bilistic model that could have generated the set of words.

[0025] In a further variation, approximating the probabil-
ity involves selecting states for the probabilistic model that
are likely to have generated the set of words in the docu-
ment, and then considering only selected states while cal-
culating the probability that the given candidate cluster is
active.

[0026] In a further variation, selecting a state that is likely
to have generated the set of words involves randomly
selecting a starting state for the probabilistic model, and then
performing hill-climbing operations beginning at the start-
ing state to reach a state that is likely to have generated the
set of words.

[0027] In a further variation, performing the hill-climbing
operations involves periodically changing states of indi-
vidual candidate clusters without regards to an objective
function for the hill-climbing operations to explore states of
the probabilistic model that are otherwise unreachable
through hill-climbing operations.

[0028] In a variation on this embodiment, the document
can include a web page or a set of terms from a query.

BRIEF DESCRIPTION OF THE FIGURES

[0029] FIG. 1 illustrates a probabilistic model in accor-
dance with an embodiment of the present invention.

[0030] FIG. 2 illustrates a state of the probabilistic model
in accordance with an embodiment of the present invention.

[0031] FIG. 3 illustrates a model representing states in the
United States in accordance with an embodiment of the
present invention.

[0032] FIG. 4 illustrates global nodes and a number of
local networks in accordance with an embodiment of the
present invention.

[0033] FIG. 5 illustrates an interaction between local
network nodes and global model nodes.

[0034] FIG. 6 illustrates a reworked model in accordance
with an embodiment of the present invention.
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[0035] FIG. 7A illustrates a simple network with two
boolean nodes in accordance with an embodiment of the
present invention.

[0036] FIG. 7B illustrates how inference works in a
simple network with two boolean nodes in accordance with
an embodiment of the present invention.

[0037] FIG. 8 illustrates a noisy-or network where loopy
fails in accordance with an embodiment of the present
invention.

[0038] FIG. 9 illustrates a loopy computation inside a
simple session in accordance with an embodiment of the
present invention.

[0039] FIG. 10 illustrates a simplified local network in
accordance with an embodiment of the present invention.

[0040] FIG. 11 illustrates two clusters competing to trig-
ger a terminal in accordance with an embodiment of the
present invention.

[0041] FIG. 12 illustrates how a local probabilistic net-
work can deal dynamically with compounds in the lexicon
at run-time in accordance with an embodiment of the present
invention.

[0042] FIG. 13 illustrates how a single cluster C issues a
virtual message to global nodes via “terminal sparseness™ in
accordance with an embodiment of the present invention.

[0043] FIG. 14 illustrates how a sparse link message gets
used in figuring out the optimal setting of a new global node
in accordance with an embodiment of the present invention.

[0044] FIG. 151 illustrates a belief network in accordance
with an embodiment of the present invention.

[0045] FIG. 15.2A illustrates an exemplary network in
accordance with an embodiment of the present invention.

[0046] FIG. 152B illustrates an alternative exemplary
network in accordance with an embodiment of the present
invention.

[0047] FIG. 16 illustrates system output in accordance
with an embodiment of the present invention.

[0048] FIG. 17 illustrates more system output in accor-
dance with an embodiment of the present invention.

[0049] FIG. 18 illustrates even more system output in
accordance with an embodiment of the present invention.

[0050] FIG. 19 illustrates yet even more system output in
accordance with an embodiment of the present invention.

[0051] FIG. 20 illustrates results of a search in accordance
with an embodiment of the present invention.

[0052] FIG. 21 illustrates data structures involved in
characterizing a document in accordance with an embodi-
ment of the present invention.

[0053] FIG. 22 presents a flow chart of the characteriza-
tion process in accordance with an embodiment of the
present invention.

[0054] FIG. 23 presents of a flow chart of the process for
selecting candidate clusters in accordance with an embodi-
ment of the present invention.
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[0055] FIG. 24 presents a flow chart of the process of
approximating probabilities for candidate clusters in accor-
dance with an embodiment of the present invention.

[0056] FIG. 25 illustrates how states for the probabilistic
model are selected in accordance with an embodiment of the
present invention.

DETAILED DESCRIPTION

[0057] The following description is presented to enable
any person skilled in the art to make and use the invention,
and is provided in the context of a particular application and
its requirements. Various modifications to the disclosed
embodiments will be readily apparent to those skilled in the
art, and the general principles defined herein may be applied
to other embodiments and applications without departing
from the spirit and scope of the present invention. Thus, the
present invention is not intended to be limited to the embodi-
ments shown, but is to be accorded the widest scope
consistent with the principles and features disclosed herein.

[0058] The data structures and code described in this
detailed description are typically stored on a computer
readable storage medium, which may be any device or
medium that can store code and/or data for use by a
computer system. This includes, but is not limited to,
magnetic and optical storage devices such as disk drives,
magnetic tape, CDs (compact discs) and DVDs (digital
versatile discs or digital video discs), and computer instruc-
tion signals embodied in a transmission medium (with or
without a carrier wave upon which the signals are modu-
lated). For example, the transmission medium may include
a communications network, such as the Internet.

[0059] The System

[0060] One embodiment of the present invention provides
a system that learns concepts by learning an explanatory
model of text. In the system’s view, small pieces of text are
generated in a fairly simple, but incredibly powerful way,
through the execution of probabilistic network. The system
learns the parameters of this network by examining many
examples of small pieces of text.

[0061] One embodiment of the system considers the
important information in a piece of text to be the words (and
compounds) used in the text. For example in the query
“cooking classes palo alto” the words are “cooking” and
“classes”, and the compounds consist of the simple com-
pound “palo alto”. Distinguishing compounds from words is
done on the basis of compositionality. For example, “cook-
ing classes™ is not a compound because it is about both
cooking and classes. However “palo alto” is not about
“palo” and “alto” separately. This is sometimes a hard
distinction to make, but good guesses can make such a
system better than no guesses at all.

[0062] What this means is that the system simplifies the
analysis of text by not considering the order of the words in
the text. For example, one embodiment of the present
invention does not distinguish the above from “palo-alto
classes cooking” (we use dashes in this specification to
connect the components of compounds). We will refer to
both words and compounds as “terminals”. (We will see
later this is because in our model of the world, they do not
generate words, as opposed to concepts, which do generate
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words.) This simplification means that the system treats
segments of text as a set of terminals.

[0063] Probabilistic Model for Text Generation as a Set of
Terminals

[0064] Let’s look at what a system that generated text as
a set of words might look like. FIG. 1 shows one such
model. Here, the circles are called model nodes. These nodes
represent random variables, each of which models the exist-
ence or non-existence of concepts or terminals. The only
terminals we are considering in this model are “elephant”,
“grey” and “skies”. There are two concepts, called C, and C,
(because they are used to generate related words, concepts
are sometimes referred to as clusters).

[0065] This model might be used for example to explain
why the words grey and skies often occur together, why the
words grey and elephant often occur together, but yet why
the words “elephant” and “skies” rarely occur together. It is
because when people are generating text with these words,
they have ideas in mind. The system’s concepts are sup-
posed to model the ideas in a person’s mind before they
generate text.

[0066] Note that there is a darker node at the top of the
figure without a name. This is the universal node, U, which
is always active. When modeling text, it is always active,
and all concepts come from it. The arrows exiting any
concept are called links. These links imply that when a user
thinks of one concept, they are likely to think of another
concept or write another terminal afterwards. For example,
the concept C, links to the words ‘elephant’ and ‘grey’. That
means that after a user thinks of C,, they often write out the
words ‘elephant’ and/or ‘grey’. In particular, the numbers on
the links are important. They represent the probabilities of
certain events. The link between C; and ‘elephant’ means
that after thinking of C,, a user thinks of the word elephant
with probability 0.5. These numbers are often referred to as
the ‘weights’ on the links.

[0067] This model can be used or “executed” to generate
text. When we are doing this, we begin at the Universal node
(often called U), and consider it to exist in the mind of the
generator. We will often say that the node is “active” or has
“fired” to imply this. For concepts, firing means that the idea
of that concept is active, and is able to fire terminals. For
terminals, the idea of firing is that the terminals exist in the
text to be generated.

[0068] Let us run through an example of how one such
piece of text could be generated. In the example in FIG. 1,
we would start out by assuming that the Universe is active.
Then C, would fire with 0.1 probability. At this point, some
random process would decide whether or not C; would fire
or not. For this random process you could throw dice or use
any random information. Usually, if this were taking place
on a computational machine, a random number generator
would be used. Many methods are adequate so long as we
have some way of producing a decision, that turns out 9 out
of 10 times to be no (0.9) and 1 out of 10 times to be yes
(0.1). When it turns out to be yes, the concept C; is activated.
When it turns out no, C, is not activated. A similar process
is applied to C,.

[0069] We will assume that for our example now, the
random number generator has produced YES for the link
Universes—C, and NO for the link Universe—C,. At this
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point, C, is active. When a concept is active, we can then
pick random numbers for the other concepts or terminals
which have links originating from that active concept. In this
example, now the words “elephant” and “grey” have a
possibility of becoming active with probabilities of 0.5 and
0.4. Now let us assume that we get more random numbers
(to make a simple analogy I will now refer to this as
throwing dice) and decide that both elephant and grey are
active. This means that we have our piece of text, it is the
words “elephant” and “grey”. Note that because in one
embodiment of the present invention the word order is not
modeled, we cannot distinguish “grey elephant” from
“elephant grey” (unless they form a compound). In this way,
we have generated a small piece of text.

[0070] FIG. 2 shows this particular execution of the
model detailed in FIG. 1. In this figure, we see the concept
C, becoming active, we illustrate this graphically by dark-
ening the node, and the words elephant and grey becoming
active. This idea of graphically viewing the execution model
of a piece of text is important from the standpoint of
examining the whole system to see if it is operating cor-
rectly, and we will use it later on.

[0071] This seems like a lot of work to generate a grey
elephant. Note however that the words we came up with
have some meaning to us as people. This is because
elephants are grey. In some small way, even this model in
FIG. 1 captures a little bit about the state of the world. If
only on the surface, this model captures the correlation
between the words grey and elephant, grey and skies, but not
elephant and skies.

[0072] Our system learns the intermediate concepts, the
links and the link weights—in order to explain the co-
occurrence of words and compounds in small pieces of text.
In addition, its generative model is slightly more compli-
cated than that above, in order to better be able to generate
and explain text of various sizes (for example, queries are
often 2-3 words, while documents are 1000 words or so).

[0073] Adjusting for Text of Various Sizes

[0074] For various reasons, the type of simple model
above is slightly inadequate for dealing with text. A simple
explanation for this is that each of the concepts produces a
certain number of words, but finds it much more difficult for
example to produce many words if the weights on the links
are small. It would be desirable for example if a concept
could produce either a few or many words from the termi-
nals it points at.

[0075] FIG. 3 shows an example concept representing the
states of the United States of America. In following our
earlier model, the concept can fire terminals representing
each of the 50 states, each with probability 1/50. Now, for
this model to generate the word California alone is not that
improbable. That probability is roughly (1/50)*(49/50)*,
which is approximately 0.7%. For this concept to fire all the
states would be (1/50)° which is incredibly small. However,
should we develop such a concept that covers the idea of the
states of the United States, we would want it to explain
pieces of text where all the states occur.

[0076] In order to address this problem, before it fires
other terminals, each concept picks an activation level.
Conceptually, this activation level chooses “how many”
terminals are to be picked from this concept. Note that this
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activation level is not a quality of our model. In fact, it is
only chosen when the model is being executed. What
activation does is it modifies the probability that this concept
fires each of its terminals (but not its sub-concepts, i.c.
concept to concept linking is unaffected by activation).

[0077] The exact numerical adjustment can be as follows.
If a link has a weight W and the cluster chooses activation
Ain its execution, and the link points between a concept and
a terminal, then the concept fires the terminal with prob-
ability (1-e™*%) Here “e” the common mathematical num-
ber approximately 2.71. At first glance, this formulation
seems odd, but it has the following nice properties: When W
is very small (<0.01) and A is a small number (say 2) the
probability is approximately equal to AW—so these num-
bers are easy to approximate in general. The reason they
have an odd exponential form, is that probabilities have to
have an upper limit of 1. So, having a link weight of 0.02
(1/50) and an activation of 100 should not give you a
probability 2.0. The exponential form also has a number of
other nice theoretical properties from a mathematical stand-
point.

[0078] At this point, we have detailed almost all the
individual pieces comprising of our model. One detail is the
interaction between two or more clusters trying to fire the
same terminal or cluster. In this case, each interaction is
independent of the other. In particular, the probability that
the result does NOT fire is the product of the probability that
each cause does NOT fire it. For example, if three clusters
C,, C,, C; link to a fourth cluster C, with weights 0.1, 0.2,
0.3 and C,, C, and C; are active: C, does not fire with
probability (1-0.1)*(1-0.2)*(1-0.3) or (0.9)*(0.8)*(0.7) or
0.504. Therefore, the chance is DOES fire is 1-(1-0.1)*(1-
0.2)*(1-0.3) or 1-0.504=0.496.

[0079] Another thing we have not mentioned is the prior
probability with which activations are picked. The learning
of the model turns out not to be too sensitive to this. There,
the activation is constrained to be =1 and a probability equal
to 1/Alog*A is the prior on the activation (wherein log* A=
AlogAloglogAlogloglogA . . .). This turns out to be impor-
tant only for the purpose of generating text. For that purpose,
any distribution which generates roughly the correct number
of words out of a base model should be adequate.

[0080] Bayesian Networks

[0081] At this point and before we proceed it is worth-
while to talk about a certain duality between the model we
have been talking about and a certain class of probabilistic
models called Bayesian Networks.

[0082] Bayesian networks are well-understood probabilis-
tic modeling techniques in which conditional independences
are asserted between various random variables in a joint
distribution. As in the model above, Bayesian networks have
nodes and directed links. These networks compactly repre-
sent a joint distribution over a number of random variables
while structurally representing conditional independence
assumptions about these variables.

[0083] In a Bayesian network, the set of nodes pointing to
a node is called its “parents”. The set of nodes reachable
from a node via following links is called its “descendants”
or “children”; and the structure implies that a node is
independent of its non-descendants given its parents. The
entire distribution is therefore encoded in the conditional
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probability tables of a child given its parents (nodes with no
parents have their own distributions). The probability of a
particular instantiation of the entire network is simply then
the product of the probabilities of each child given its
parents.

[0084] Bayesian networks are related to our model in the
following way, if each node in the execution of our model
is considered to be a random variable then the joint distri-
bution over the set of nodes that are turned on is exactly that
which arises from considering our model as a Bayesian
network with noisy-or combination functions. Noisy-or con-
ditional probabilities turn a boolean child on independently
from each parent. That is, the probability of a child being off
is the product of the probability that each parent does not fire
it. Note this is exactly the combination function used in our
model to decide if multiple active concepts that link to a
terminal fire it. Note that Bayesian networks are themselves
a subclass of more general probabilistic models.

[0085] Tearning

[0086] At this point, we have gone over how an existing
model could be used to generate text. We have not detailed
a couple aspects of this work: (1) how our model is learned;
(2) how our model is used to estimate the concepts present
in text; and (3) how our model is used in practical situations.
In this section, we will attempt to detail how our model is
learned, and the various techniques that can be used for this

purpose.

[0087] In learning a generative model of text, in one
embodiment of the present invention some source of text
must be chosen. Some considerations in such a choice are as
follows: (1) it should have related words in close proximity;
(2) it should present evidence that is independent, given the
model we are trying to learn (more on this later); and (3) it
should be relevant to different kinds of text. For this reason,
the implementation of the model which follows uses exem-
plary “query sessions” from a search engine as its small
pieces of text. We have also implemented and run our model
on web pages and other sources of text, but for the purposes
of making this exposition more concrete, we focus on the
analysis of query sessions.

[0088] To be more precise, we define a query session (also
referred to as a user session or a session) as the set of words
used by a single user on a search engine for a single day.
Often users will search for related material, issuing several
queries in a row about a particular topic. Sometimes, these
queries are interspersed with random other topics. An
example query session (not an actual one) might look as
follows:

[0089] the graduate

[0090] dustin hoffman

[0091] rain main

[0092] autism

[0093] cool junk

[0094] fast cars

[0095] tom cruise nicole kidman

[0096] Each query here is on a separate line. Note that
most of the words are related in some way. The first is a
movie by Dustin Hoffman, as is the third. The second is
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Dustin Hoffman himself. The fourth deals with an issue
brought up in the movie. The fifth query “cool junk™ is not
related to the main topic of the session, neither is the sixth
“fast cars”. The last is a little related because Tom Cruise
acted in Rain Man with Dustin Hoffman. In general, there is
alot of information in such a small piece of text, using which
we can draw conclusions, but there is also a lot of uncor-
related junk. The main task our system has is to cull out the
proper correlations from the junk, while looking at a large
number (billions) of such pieces of text.

[0097] Learning a probabilistic model that can explain all
the words that occur together in queries is difficult. Note that
in the explanation of the session above, we used information
we had about the world in general to explain the query
session. This is the nature of the information that our model
learns in order to come up with a world model in which a
session above is more than infinitesimally likely. The fol-
lowing is such an approach.

[0098] Imagine that we don’t know what the model is, but
we know that a large number of concepts exists. Probabi-
listic networks can themselves be used to represent this
uncertainty. A node can be introduced representing each link
between a concept and another concept or a terminal. These
kinds of nodes are called global nodes, and they represent
our uncertainty about the model itself.

[0099] These global nodes are different than the model
nodes above, in fact they represent uncertainty about the
model nodes and links. Now, for each piece of text (user
session) we replicate the entire model, creating a local
network. Each model node replica is called a local node, and
these local nodes represent our uncertainty about whether or
not a concept exists for a particular execution, the one that
lead to this piece of text. In order to learn our model, we
have to take into account all of our uncertainty about our
model, and do some sort of reasoning to come up with a best
model, or a set of models using which we can do further
processing.

[0100] FIG. 4 shows what this big network might look
like. Above the dashed line are global nodes, they represent
uncertainty about our model. The node U—C; represents the
uncertainty about the weight of the link between U and C,
in the model (Recall that U is our name for the universal
node that is always active). Similarly, so do the nodes
U—-T,, C,—C,, C,—T,, and so on. Note that our model
does not allow everything to link to everything else. This is
because in order to have a consistent explanation of ideas all
coming from the Universe U, cycles in the link structure are
not allowed—for example a concept C, that can cause C,
that can cause C, and so on, makes C,; and C, always likely
even it U does not link to them. For this reason, a concept
is only allowed to link to higher numbered concepts than
itself and the universal concept can link to everyone.

[0101] Now, below the dashed line are the local networks.
In each network, the terminals for a particular user session
are assumed to be active. Note that our model is replicated
for each such session. This is because what we observe for
each session is only the words that the user used, and not in
fact that concepts that were active in the user’s mind when
those words came about! The local nodes here represent our
uncertainty about these concepts. Because the user may have
been thinking of anything when they wrote each word they
wrote, all concepts have to be considered in each local
network.
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[0102] Now, how do the local networks relate to the global
nodes? Simply put, each link between U and C, in a local
network is mediated by the global node (U—C;). The
probability that U fires C, in each local network depends on
the global node (U—C,). In a full probabilistic network
drawing of the local networks of FIG. 4, each the global
node (U—C,;) would point to every C; in every local
network. FIG. 5 shows this interaction with one such
network because there was not enough space to do so in
FIG. 4. Also, FIG. 5 only shows the interactions for a model
with two concepts. The links here between the global node
(U—C,) and C, represents the fact that C; needs to know
both the status of U and the global node (U—C,) before it
fires in a local session.

[0103] FIG. 6 shows a slightly reworked version of this
model, where variables exist to explicitly show whether or
not each concept triggers another concept or terminal. Note
that the joint distributions implied by both are the same,
once they are projected to the original variables we are
interested in (i.e. C; and C,). The triangles in this figure
represent extra “trigger” variables, and it is often helpful to
think about the model with them because they simplify the
number of conditional probabilities that are required.

[0104] For example, in FIG. 6, the “trigger” variable
between U and C, only needs to know the distributions of U
and the (U—C,) to decide the probability that C, gets fired
from U. Similarly the other trigger into C, only needs to
know the values of the C; and (C,—C,) distributions. These
two joints are simpler than the joint over all 4 variables that
the C, node would need in the FIG. 5 model. This is
primarily because the complexity of a conditional probabil-
ity specification rises exponentially with the number of
elements it has to account for.

[0105] This point is worth making a little clearer. Imagine
for example that a person enters a complex betting scheme
where the outcome of the bet depends on 10 horse racing
events, with each outcome providing a different payback. In
order to communicate this bet, 2% or 1024 numbers are
required, because that is the number of distinct outcomes if
all the races are considered simultaneously. Imagine now
instead that the same person enters into 10 independent bets
on each of the horses, winning or losing some depending on
each horse. This bet now requires only 10 numbers to
communicate. Similarly, when a conditional probability
distribution has to account for N variables 2™ is the order of
complexity required, and therefore the amount of computa-
tional complexity required to deal with such a state. This is
why trigger variables are useful as a factoring of this
problem. From this point onwards, we will show our local
networks interchangeably in either triggered or non-trig-
gered form.

[0106] One last thing is still necessary to specify in the big
network so that it is probabilistically well defined. First, the
global nodes require a prior distribution. That is, in order to
combine evidence about how likely it would be that a
concept links to a particular other concept or word, we need
to know what our belief in that would be a priori. The
learning of our model turns out not to be too sensitive to this
distribution, so many things are possible here, including
using a flat distribution of 1/1000 on the link being nonzero
and 1/1000 on the link being nonzero.

[0107] This is a bit of an aside and a diversion, but or the
sake of completeness let us mention here that this does not
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constrain the variables fully because no density is imposed
on nonzero values, and it is only the product of activation
that weight that matter for firing probability. However,
heuristics that we use to pick the activation of a concept in
a session imply that the total weight of firing from the
concept to all terminals should roughly equal the average
number of terminals this concept fires divided by the aver-
age number of words it can fire in each session. Also,
another way to set these probabilities depends on the specific
way in which inference on the global nodes happens. As it
is, we look only for a simplified model where each global
node is represented by a two spiked distribution, one at 0 and
one at another best value. In this case, you can estimate the
prior on a new link to be dependent roughly on the Kol-
mogorov complexity of the network given this new link, that
is on how simple the model is with the new link, assuming
in fact that the whole model in fact derives itself from an
explanation of the world in which models are more likely if
they are simpler. Here, a link from a cluster to a terminal
could be more likely depending on the number of other
things that the cluster links to, or the number of things that
link to the terminal, or both.

[0108] Once the entire big network is set up, there is no
more conceptual work to be done. Running inference on this
network is fairly straightforward from a theoretical point of
view, and given enough computational power, it is straight-
forward to arrive at all of the distributions of the global
nodes, which fully specifies the model. Inference here means
for accounting for all the training evidence (the user ses-
sions) given, and fully being able to use the implications of
that evidence on our model. The distribution over likely
models in turn allows us to guess exactly at which concepts
are active when certain pieces of text are active, and with
which probability. In fact, the distribution over the model
allows us to answer all questions about the generation of
such text.

[0109] Only one problem remains, that of scale. The basic
problem is as follows: let’s say there are around 5 million
concepts in the world (and that’s small, consider that there
are 6 billion people, and when talking about each of them,
you might say different things so there are at least 5 billion
concepts, but let’s assume 5 million to start things out). Let’s
assume there are 1 million terminals (it turns out with
compounds such as new-york, that’s easy to get to, and
that’s only with English). Now, let’s say we want to train this
network on 5 billion user sessions. In addition, let us ignore
the computational burden of dealing with continuous ran-
dom variables (which is considerable). Note that the model
nodes have to be replicated once for each session. This
means that the full big network will have:

5 billion sessionsx(1 million terminal local nodes+5

million concept local nodes)x=30 billion million local

terminal nodes
[0110] . and that’s the easy part. Now let’s count the
links. The global model has 5 million nodes, each of which
can link to 1 million terminals, each of which can be
replicated in the local networks 5 billion times, each of
which then has a link from the appropriate global nodes (that
doubles the number) so that’s:

1 million terminalsx5 million clustersx5 billion ses-

sionsx2=50 million million billion links!
[0111] . and the worst part is that correct inference
techniques run in exponential time over the size of the
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network, so basically, doing this the straightforward way is
impossibly expensive. The next section of this disclosure
discusses the different things that can and have to be done in
order to make this system possible.

[0112] Scalability Techniques and Loopy Belief Propaga-
tion

[0113] The first problem we have in solving our large
networks is that full inference is exponential in the size of
the network. Here we take some shortcuts. There is an
inference technique called “loopy belief propagation” (com-
monly called loopy) that propagates evidence around a
probabilistic network in a rapid if incorrect manner. It has
the advantage of being fast, but the disadvantage of being
incorrect. It often however proves to be a good approximate
solver for various belief networks.

[0114] TLoopy belief propagation relies on two types of
messages that are transmitted in a network in order to figure
out the marginal distributions of all nodes in a particular
network. Down messages are those that move with the flow
of links, and they summarize for whatever node is on the
other side of the link, the belief in the source given all other
evidence other than what comes from the destination. Up
messages move against the flow of the links and tell the
destination node (which is also the parent in the probabilistic
network sense) what the probability is of this side of the link,
given various values of the destination node.

[0115] FIG. 7A displays a simple two boolean node
network with noisy-or components. Here node A has prior
0.1 of being true, and B has 0.3 of being true given that A
is true. Now we can determine the probability of B being
true by running loopy on this network. A propagates a down
message to B telling it that given all other evidence, A
believes it itself is true with probability 0.1. B receives this
message, and factors in the conditional probability (noisy-
or) at itself, and concludes that it is true with probability
0.03, and we are done.

[0116] FIG. 7B displays a two boolean node network that
shows how inference works using up messages. Here, there
is evidence on B that B is true. So, we are trying to determine
the probability of A given that B is true. B sends an up
message to A, this tells A that B can only be true if A is true:
that is, given that A is false, the probability of the evidence
from below that B knows about is 0. Therefore A must be
true. A receives this message and multiplies it by its prior on
itself, which has a 0.1 chance of being true, and concludes
that it must be true and so therefore given the evidence, A is
true.

[0117] Loopy belief propagation is not technically an
exact solution to the inference problem for the following
reason. When evidence arrives at a particular point from two
different sources, they lose information about whether those
sources are correlated. Imagine the following example.
Three people A, B, C are involved in a conversation. A tells
B that he believes the stock market will go up in the next
month. B tells C the same information. At this point C tells
A that someone else believes the stock market will rise. The
problem with loopy is that with this simple belief propaga-
tion system, A cannot now tell that C’s belief is in fact based
on A’s original assertion, and therefore evidence from A
circulates back to itself. In a slightly more complex way,
loopy belief propagation circulates evidence around loops in
the network to create a usually accurate but sometimes
inaccurate solution.
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[0118] When loopy runs on a network with no loops it is
exact, and settles within a number of steps equal to the
diameter of the network. When it runs however on a network
with loops, evidence loops around the network. Usually it
settles on a particular solution, but there is no guarantee that
that solution is correct, or even that loopy ever settles at all.
FIG. 8 in fact shows a noisy-or network where loopy fails.
Here D is assumed true, and it’s only source is really A, so
inference should show that A is true. Loopy however settles
on a value of approximately 0.6 for A. Usually, however,
loopy works pretty well, and we will examine how it can be
improved later on in the disclosure.

[0119] An additional point to mention here is that the
effect of running loopy on this big network is largely
equivalent to the notion of running an EM (expectation
maximization) operation on the data considering the clusters
to be hidden variables. In EM, an initial guess at the model
variables is taken; then the probabilities of the hidden
variables are inferred; then the guess for the model variables
is updated. This is essentially the same computation as
loopy. One difference between the two is that loopy does not
reflect evidence from one session back at itself, i.e. a proper
accounting of loopy would discount the down message from
the global nodes for the previous up message that the session
sent in the last iteration. There is not much difference
between the loopy approach and running the EM approach
on different pieces of data each iteration. In the remainder of
this disclosure we will use the loopy nomenclature rather
than the EM nomenclature in discussing this process.

[0120] TLoopy Belief Propagation in the Big Network

[0121] TLoopy messages are used across the global/local
boundaries in the big network. Here the global nodes propa-
gate down their beliefs in themselves to a particular local
network—and since the network is just one of billions
usually this is just the same belief propagated everywhere.
Also however, the trigger nodes propagate up the probability
of the network given everything else that is known about the
trigger node.

[0122] FIG. 9 shows the loopy computation happening
inside a particularly simple session and with a model includ-
ing only one concept (C,) and one terminal (T,). Note that
in this session, we have seen the terminal T, that is why the
local node is darkened. Now, let’s take a look at what some
of the messages surrounding this model are.

[0123] First, let’s look at the down message that comes
from the (U—C,) global node to the Trigger node between
U and C,. This message has to report the current belief in the
state of the (U—C,) node, given the data it has digested in
the current iteration of loopy from the other sessions.
Communicating and computing with a complete and accu-
rate distribution over a continuous variable would be pro-
hibitive. For this reason, the down message from (U—C,) to
the trigger node in this session between U and C, is
simplified. Instead of communicating a full distribution, it
approximates the distribution with a two peaked discrete
distribution, with one peak at O and another peak at a chosen
“best value” W.

[0124] In figuring out this down message, our system first
compiles evidence coming in from other sessions about this
global node. Our system then picks a best nonzero value W
for this node. It then translates the up messages into mes-
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sages about the node’s existence, allowing it to determine
how much of the probability to send in the down message at
the best value W and how much at the value 0. This
simplification of the down message from global nodes is
advantageous in dealing with the discrete-continuous nature
of the global nodes in a computationally feasible manner.

[0125] The simplified down message from (U—=C,) is
along the little arrow next to the link emanating from
(U—C)). It is labeled (0.1, 1.0). This means that the best
value is 0.1, and with probability 1.0, this link exists. For
reasons that we would like all networks to be partially
explainable, we never let the links from U to anything have
probability less than 1.0. Another example down message is
the one emanating from (C;—T,) to the trigger node in
between C; and T, in the local network. This message is
labeled (0.2, 0.8) which means it has a 0.8 chance of being
nonzero, and when it is nonzero, it equals 0.2.

[0126] Now, let’s try to do some inference on this network,
given that we know the down messages from the global
model. There are three trigger nodes, one from C; to T, one
from U to C, and one from U to T,, whose probabilities we
don’t know. We also don’t know the probability of the
cluster C, being active within this session. All of these can
be figured out by running loopy on this session. Before we
run through a sample of these computations however, we
will cover an additional simplification. The message down
from (C,—T,) down to the trigger node is labeled (0.2, 0.8).
However, before we use this message, we pretend it was
actually a single message of (0.16, 1.0) by multiplying out
the two spiked distribution and again simplifying it into a
single spiked distribution. Now we are ready to look solely
at the little session network. This simplification is also done
within our framework.

[0127] One small assumption we can make is that the
activation on C; is set to 1. Typically, in running probabi-
listic networks, this value can be derived itself through
inference. However, while trying to do inference in these
local networks, our model assumes that the activation of a
cluster is equal to the number of terminals it could possibly
fire in this network. This is the adjustment we talked above
carlier that deals with the fact that only the product of the
activation and weight mattered. This adjustment is made
with the following justification, that the activation only
matters to within an order of magnitude, and therefore, no
computational time ought to be spent in determining it
optimally.

[0128] Now, we can look at a simplified noisy-or model of
this network, while ignoring the global nodes. This is
because all of the information the global nodes feed into the
system can be summarized by the weights on the noisy-ors
between clusters and other clusters or terminals. This is a
standard technique in probabilistic networks of simplifying
away nodes with no other parents by summing them into the
network at hand. The simplified local network then looks
like the one in FIG. 10. The links in this network are labeled
0.095, 0.095 and 0.1478. This is because the probability that
U triggers T, is now equal to 1-e~** which is 0.095. Recall
earlier how we said that the link should trigger the resultant
with probability approximately AW. Here A is 1 and W is
0.1, and this is approximately 0.095. The same applies on the
link between C; and the trigger to T, which is 0.1478 which
is 1-e%!% which is approximately 0.16.
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[0129] Now, we know that T, is true. Let us determine
how likely it is that C; caused it. The down message the
trigger node from U sends to T; is (0.095, 0.905), where
0.095 represents the belief that the node is true and 0.905
represents the belief that the node is false. Note that the
nature of this down message is totally different than that of
the down message from a global node. This is because the
trigger node is a boolean variable, whereas the global node
is a strange mix of a continuous and discrete variable with
some probability mass at 0 and some density at the other
points, and further this is approximated by a two point
distribution, then further simplified into a single point dis-
tribution.

[0130] Because the trigger is a boolean node, it need only
send down its one number, the probability of it being true,
the other number is just 1 minus the first number, and in our
implementation, we do this optimization. T, takes this num-
ber and sends up to the trigger node on the C, side, the
probability of T, given that the trigger triggered, versus the
probability of T, given that the trigger did not trigger. This
up message is (1.0, 0.095). Now normally, up messages for
boolean variables have two such values, but really only one
is needed, the ratio between the two (given that infinity is a
representable number). Now, the trigger node from C; to T,
gets an up message of (1.0, 0.095) but it also has a down
message coming from C,; above. This message is (0.095,
0.905) from C,. Now, the trigger node has all the informa-
tion it needs. It transforms the message from above into
(0.095*0.1478, 1-0.095*0.1478) or (0.014, 0.986). This
transformation means that it now has its own belief given
what is above it. Now it multiplies that component-wise by
its belief of what is below it to get (0.014*¥1.0, 0.986*0.095)
or (0.014, 0.09367), then it normalizes this to sum to 1 to get
(0.13, 0.87), which is its final belief. Similar computations
can now be carried out to figure out all the other “hidden
variables” in this network.

[0131] In general loopy gives a node a belief on its
parents, and its children’s belief on itself. It uses its condi-
tional probability distribution to transform the belief on its
parents to a belief on itself. It now has two belief numbers
for itself, which it multiplies component-wise, then it nor-
malizes to 1 to obtain its own belief. A couple of optimiza-
tions we often do in computing these messages are the
following: we do many probability computations in log
space in order to avoid underflows. This includes both the
down messages and the up message ratios. In addition, in
order to implement loopy so that it works in linear time in
the number of parents on a node, it helps to be able to
subtract out the effects of one parent from the belief of the
node. This is done via a special routine that takes N numbers
and computes all N products of N-1 of those numbers in
order to do this propagation quickly.

[0132] Now let’s take a look at the up messages sent up to
the global nodes which are of a different nature. Recall that
the global nodes are actually discrete-continuous random
variables which can take any value from O to infinity. Let’s
work out a simple example which shows how you can
compute the probability of a network given the weight on a
link.

[0133] FIG. 11 shows two clusters C; and C, competing to
trigger a terminal. The down messages from (C;—T) and
(C,—T) to the appropriate trigger nodes indicate a firing
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probability of ql1 and g2, respectively. Note that as men-
tioned above, we approximate the impact of the down
message from a global node by multiplying its probability of
existence times its best value, therefore, we approximate our
solution by pretending that in the local network, C, can
launch T with probability 1-e~**%*, and similarly for C,
launching T. Now the messages coming into C, from the
other parts of the model show that it is pl likely to be true.
Similarly, messages coming into C, from other parts of the
model show that it is p2 likely to be true. C, and C, are
decided to have activations al and a2; and the node T is a
terminal that has been observed.

[0134] Now, let’s look at the up message sent along the
link from (C,—T) to the trigger node in the local model
between C, and T. This message is labeled M in the figure.
This message can transmit the probability of the network as
a function of q1. The actual probability of the network need
not be sent. In fact, only the relative probability ratios need
to be sent, i.e. any constant factor multiplied by the prob-
ability can be sent, so long as the factor is the same for all
values of ql. Finally, we are prepared to investigate the
message sent up.

[0135] There are four possibilities to account for in the
network, each with their own probabilities for what happens
outside this small network. The first is that both C; and C,
are true. This happens with probability plp2. In this case, the
probability of T being true (the only remaining evidence in
the network) is equal to:

{_e-alalg-a2q2
[0136]
plp2(1-etate=a2a2),

[0137] If ¢, is true and C, is false, the probability of this
happening is p1(1-p2). The probability of T being true is:

and therefore the whole network probability is,

1—e-alal
[0138]
p1(1-p2)(1-e~2at).

[0139] Similarly, if C, is true and C, is false the probabil-
ity of the network is

and therefore the whole network probability is,

p2(1-pl)(1-e**®)

[0140] And last, it is impossible that T is true if neither C;
nor C, are true. Therefore, the function message sent up to
the global node (C,—T) is:

plp2(1-e 2tate—a2a2)y

pl(1-p2)(1-e M)+

p2(1-p1)(1-e7*9%).
[0141] Although this function seems complicated it is
actually pretty simple. Consider that the only variable in this
function for the purpose of the message M is q1. Therefore,
this function sums up into the following form:

a+bealat

[0142] ... where a is the sum of all constant terms above
and b is the coefficient of 7! in the above sum. Note that
q2, pl, p2 are all considered constant for the purpose of
sending up a message to the node (C;—T). In fact, since the
constant factor this function is multiplied by does not matter,
this equation can be rewritten as:

1+ke 19t
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[0143] . .. leaving only two numbers to send up to the
global model, k and al. We refer to these up messages to the
global nodes as link messages.

[0144] Now, the functional form of these up messages
does not change much when the destination of the links is a
cluster. For example, if T were a cluster, then the activations
of C; and C, would not matter, whereas T might receive an
up message from other terminals dictating whether it was
likely to be true or not. This would simply add another set
of conditions to the computation, because each world view
would have to account for T either being false or T being true
as well, and the sum above, instead of having four different
parts, would have 8 parts, one for each possible value of C,,
C, and T. Now by sending up messages to the trigger nodes
(which we have not simulated here), our code efficiently
avoids the exponential blowup that a full consideration of T
and all of its cluster parents would incur, which would be
prohibitively expensive if T had more than a few parents.

[0145] One thing to note is that although we are running
loopy across the entire network including the global nodes,
we don’t have to run the local and global iterations of loopy
in lockstep. In fact, we often run tens or more iterations of
loopy on each local network in order to converge it, before
we return to running the one step of loopy on the global
nodes.

[0146] Link Weight Optimization

[0147] Now, we are ready to consider how loopy treats
global nodes; i.e. in each iteration of loopy, how our model
reconsiders both the existence and the best value for each
link in the model. Recall that the up messages to any global
node are of the form:

1+ke2tat,

[0148] Now, in order to select the most likely weight value
for this variable, our model simply has to combine all these
up messages and pick the best value for the global node. Let
us change our notation a little for convenience. Say a node
receives N up messages of the form (1+k;exp(a;x)). Here we
are using i as a subscript that goes from 1 to N. The k; are
the constant factors, the a; are the coefficients on x, and x is
the variable that is to be solved for X here represents a
possible choice for the variable, while the function messages
represent the probabilities of various sessions using different
values for x.

[0149] In order to select the highest nonzero x, we simply
have to find the x which maximizes the product of all of
these up messages (which are also called link messages
because they go to the global node that determines a link
weight). This is a one-dimensional optimization problem.
One way to solve this would be to sample x in a range. A
more efficient way would note the following: the product of
a bunch of numbers is optimized when the log of the product
is optimized. The log of the product of these numbers is the
sum of their logs. This leaves us optimizing,

N
Z log(l + k;e"“).
i=1

[0150] Now we can take the derivative of this with respect
to x, and search for points in a particular range (say 0 to 1)
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where the derivative vanishes, for a local optimum. This
search can be done by bisection or via any number of other
techniques. This function can sometimes be non-monotonic
(i.. not always rising or falling), so sometimes this has more
than one local optimum, but this is typically not always the
case.

[0151] A small note here, why does this optimization not
produce an optimal x of infinity or 0? The nature of the
function 1+ke™ depends a lot on k. If k is positive, this
function decreases for larger values of x. This means that
this particular session is harmed by having this particular
link be larger. Typically, this happens when a cluster points
at another cluster that is not likely in probability to be
indicated by the session. If k is negative, in particular around
-1 then this indicates a strong reason to have this link. For
example, assume k is -0.99. Then x being O implies a
relative probability of 0.01. X being very high implies a
relative probability of 1, therefore, x is 100 times as likely
to be very high as it is to be 0. Sometimes however, it turns
out that a value of 0 is the only local optimum. When that
happens, our model puts all of the probability mass of the
link at 0.

[0152] When the best value is chosen, the up messages
then can be converted into up messages for a boolean
existence variable, trading off the best value of X versus the
value of 0. The product of probabilities above is simply
evaluated at X and at 0, and the prior on the link’s existence
(1/1000 as above or as determined by Kolmogorov com-
plexity) is mixed in. This mixing in gives us the existence
probability for the link.

[0153] Pre-Compounding and the Lexicon

[0154] Our model deals with a finite set of words or
compounds that it understands, which is referred to as a
lexicon. A preprocessing phase is required to determine this
lexicon. This preprocessing phase determines the important
words and compounds for our model to be able to process.
Roughly speaking, all words that are seen over a particular
fraction of the time in user sessions are included. Compound
inclusion is more complicated. Two strategies are possible
here: 1) be more inclusive of the compounds and do run-time
compounding 2) be less inclusive on the compounds and do
static-time compounding.

[0155] The reason compounding is complicated is because
of the notions of compounds itself. As we discussed above,
if a set of words is basically non-compositional such as “new
york” then it is a good compound. Another set, like “red car”
is compositional, in that it is both red and a car. One way to
discover this is to look at user session breaks and splits. We
can count for each potential compound the number of times
it is broken. A broken compound here means that in one
query the user issued the whole compound, while in another
query, the user issued part of the compound. For example,
the following session has 2 breaks for red car:

[0156]
[0157] blue car
[0158] yellow car

red car

[0159] Splits are a similar concept, where the compound is
split apart at either end. For a two-word compound a break
is also a split but for a longer compound like “this is the time
for all good men” a break could be seeing the words “the
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time” somewhere else in the session. Now, this information
can be combined with information about the likelihood of
the break to account for the possibility that the break is not
intentional but accidental, for example, a user could see the
following user session:

[0160] new york cars
[0161] new magazines

[0162] ...and our model would conclude this was a break
for “new york”. However, since “new” is a relatively fre-
quent word, the weight of a break, or how significant our
model believes it to be should be weighted by how common
the word is. All of this information, the compound’s fre-
quency, the frequency of both breaks and splits, and the term
frequency of the split or break words, is used in determining
an appropriate set of compounds for the lexicon. It is not
necessary for this lexicon to be based on user sessions, in
fact any manner of text, including web documents, books
and so on can be used to form an appropriate compounding
lexicon.

[0163] In the static compounding approach our model
takes the frequencies of the words and compounds in the
lexicon, and uses them to pre-compound the text. In this
case, each sequence is explained using a dynamic program-
ming approach that tries to maximize the probability of
seeing a sequence of tokens from the lexicon. The dynamic
programming approach is to run across the length of a piece
of text and maximally explain the sequence of tokens seen
so far. At each point, if we know the best explanation of the
sequence up to each new word, then one of two things is
possible: (1) either the word is explained by its own lexicon
token, and all the other words before are explained by their
best explanation to that point or (2) the word is a part of a
compound that mixes with the best explanation of the query
up to a number of tokens previous. Both of these alternatives
can be explored, and a new best explanation for the session
up to that point can be generated. By running this operation
as we see each new word in a set of words.

[0164] In the dynamic compounding case, evidence in the
session is taken to be evidence on an OR of possible word
solutions that occur at each position within the session. FIG.
12 shows how a local probabilistic network can deal
dynamically with compounds in the lexicon at run-time.
When a session consisting solely of the words “new york™
is seen, evidence is not counted for the words new, york, or
even new york. Rather, we see that at the first position, either
the word “new” or the compound “new york™ would explain
that position. Similarly, either “york” or “new york”
explains the second position as well. All of the messages we
discussed in the previous section are fairly easy to adjust to
this new compounding method. In fact, this method has the
advantage of being able to decide whether or not a pair of
words is a compound based on the other words in the
session.

[0165] Sparseness and Initialization

[0166] Whereas the description of our model above for the
most part assumes an arbitrarily large number of concepts,
this need not be the way the technique is initialized. In fact,
our model starts out with only one particular cluster, the
universal cluster, U, which is also referred to for only
mnemonic reasons as CANADA (note that this is different
than the country of Canada).
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[0167] Loopy belief propagation is an iterative approach,
and so there is always time in its running to introduce new
potential clusters, and this is what our model does. At each
iteration, our model takes a number of user sessions and
examines the words in the sessions. If a session contains a
sufficient number of words, then a new cluster is formed that
perfectly explains that particular session. This new cluster
introduces a large number of potential model nodes—one
for each potential model link in or out of this new cluster.
Not all of these are stored either, in fact, our model only
stores a particular link if the link optimization phase deter-
mines that it is more likely than a particular threshold to be
existent, AND it’s weight is sufficiently larger than the
weight of a link from CANADA. This is to remove spurious
links from the model, because as we will see they cost both

[0168] memory and computational resources. This simpli-
fication will be referred to as “model sparseness”.

[0169] A similar sparseness is imposed on the local net-
work. Even at the beginning, with a lexicon of 5 million
words and compounds, local sessions would be particularly
large. There is really no reason to involve every terminal and
compound in each local network. We can summarize the
effect of having observed all words and compounds not in
the text to be false. This is done by pre-computing for each
concept the probability that it fires no words. This can be
done after a link optimization phase (more on our model’s
phases later). This precomputation can be adjusted by
removing the effect of the words that are actually in the text.
That is, instead of additively determining the effect of all
nonexistent words, we compute once for each cluster the
probabilistic costs of it triggering no words, and subtrac-
tively remove the effects of the words that are already there.

[0170] This “terminal sparseness” removes all but a few
terminals from each local session, and summarizes them
with some evidence for each concept pointing at a “false”
boolean node with a determined weight (that weight being
determined by the probability of firing nothing divided by
the probabilities of it firing the terminals actually in the
session).

[0171] In addition, when sending up messages to the
global nodes, the effects of all of the nonexistent terminals
is summarized. Normally, if a cluster C, exists in a session
with only one word T,, we would need an up message (with
a positive k as above!) relating that the probability of the
network would be reduced for a link between C, and C,, and
C, and C; and C, and T, and C, and T; and so on. There
would be millions of these up messages. Instead, we sum-
marize this with one up message. This process is part of a set
of techniques for “link message sparseness”. Let us examine
how this is done.

[0172] In FIG. 13 we see a single cluster C, with prob-
ability p of being true as determined by the rest of the
network. In this session, C has activation a. Now, the
terminal T is not observed. It is to be excluded in the session
via “terminal sparseness”. Let’s say X is value of the (C—T)
node. The up message along the link from the (C—T) node
to the trigger node between C and T communicates the
probability of the network given x. Now, the probability of
T being false is approximately:
P(C is truelall else)*P(T is false|C is true)+P(C is

falselall else)*P(T is false|C is false)=Pe **+(1-
Pplep(l-ax)+1-p=1-pax=e ™
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[0173] Here we are assuming that the link strength x is low
which seems reasonable because the cluster is there but the
word is not. With a low link strength ¢™**=(1-ax). Also to do
this computation exactly, we would have to adjust for the
fact that we initially computed the probability of C assuming
this word was not there, which has to get discounted for in
the loopy determination of this particular up message. The
reason we don’t do this, is that ignoring this fact allows us
to send up only one number for the existence of the cluster
C in this piece of text. This information—the product
e P**—ijs then factored into all link optimization computa-
tions on model nodes that have C as a source, i.e. the (C—T)
global node uses this number to approximate the effect of its
optimal value on the probability of this network.

[0174] One small error introduced here is that because
these messages are sent per cluster, we also consider them
for combinations of cluster and terminal where the terminal
actually occurs in the text! For example, in FIG. 13, the
sparse link message that C sends up would get used in
figuring out the optimal setting of the global (C—T) node.
This is correct. But it would also be used to compute the
optimal value of the (C—T,) node, which is incorrect as T,
actually occurs in the text! In order to adjust for this, the
trigger node between T, and C includes an extra component
in its link message. This adjustment of ¢P** is transmitted
along with the normal link message for to the (C—T,) global
node. This cancels out the e *** coming from the sparse link
message and all the computations complete approximately
correctly.

[0175] Thus far, we have simplified away terminals that
are not there, and link messages up from their trigger nodes.
There are still potentially in a big model millions of cluster
nodes to deal with in each local network. In order to simplify
this, we do a fast approximate calculation that allows us to
determine which clusters are likely to exist with any prob-
ability in the session. It turns out that for the purposes of the
global messages needed for learning, clusters that turn out
not to be likely have little impact on the global model once
the universe’s sparse link messages are accounted for.
Therefore, a quick computation that allowed our model to
just not consider a large number of clusters would be
extremely advantageous.

[0176] Our model runs a routine called “parent picking” to
determine which clusters to even consider within a local
network. This routine uses a few types of information (1) the
a priori likelihood of the cluster which can be estimated from
its probability in all other sessions (2) the words in the
session, which generate likelihood for the clusters that point
at them (3) the words linked from the cluster with high
probability and (4) the structure of the global model. We will
return to and examine this routine later but for the moment
note that after running this routine on a small piece of text,
if typically reduces the numbers of clusters to be examined
by large factors. In one large model with a million plus
concepts, and running on the session consisting of the single
word “office” our model ends up considering only 12 out of
the million plus clusters. This “cluster sparseness” also
greatly reduces the amount of work required to analyze a
session.

[0177] Note that up messages have to be sent not just for
the links that already exist with high probability in the
current iteration. One embodiment of our model needs to
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send up messages also relating concepts to new words, in
fact this is how new words become linked from a concept.
Consider for example that the initial allocation of a cluster
C is to a query session:

[0178]
[0179] palo alto
[0180] berkeley

california

[0181] Now as we are training on a new local network, we
observe the session:

[0182] california
[0183] berkeley
[0184] san francisco

[0185] FIG. 14 shows what such a network might look
like (here we have eliminated the trigger nodes for aesthetic
reasons). Our new cluster C points to both california and
berkeley in this session. Note that using terminal sparseness
all other terminals are not considered explicitly, and simi-
larly using cluster sparseness. Also, because of not storing in
the model links that are low probability, there is no explicit
link between C and San Francisco (that is why there is a
dotted line between them). Note also that the global node
(C—San Francisco) also does not explicitly exist because of
model sparseness. Now, if C is determined to be probable in
the session, it is advantageous to send an up message to the
node (C—San Francisco) which does not exist. When our
model receives this message, it computes an optimal value
for the (C—=San Francisco) link, and if the link is significant
enough (it both exists and has high enough best value) a
(C—San Francisco) node is added to the global model. This
is precisely how the global model grows new links from
clusters to terminals. However, one optimization that can be
done is to only send these new-node link messages up if the
cluster has a high enough probability after locally running

loopy.

[0186] The effect of these sparseness techniques is fairly
important. Their essence is the combination of multiple
messages into summary messages, and the sparse represen-
tation of virtually nonexistent information that can be
largely ignored.

[0187] Model Storage and Compression

[0188] At this point, we have gone over many of the
theoretical details surrounding both the specification of our
model as well as the some of the sparseness techniques that
are used to make our model practical. This section covers the
execution of our model, that is the precise set of steps and
processes which execute on the above theoretical model.
There are still important theoretical introductions in this
session however because only in the view of the actual
running of our model are some transient effects explainable.

[0189] Our model is able to be run in parallel on separate
computational units which exchange data using a shared file
system or a network. A stage in its operation is said to be
“sharded” if it can be split up in a way such as to make this
parallelism possible. Data is said to be “sharded” in the same
way (for example, often we say a file is sharded by id, this
means that it is split into N pieces, and data with a certain
id is placed in the id mod N piece).
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[0190] Components Stored

[0191] First, we begin by covering the components of the
information that our model can store from one iteration to
the next in order to enable it to learn.

[0192] User sessions are stored as one or more files in the
file system. Their format is such that a lexicon lookup has
already transformed each recognized word into a unique
integer, which is its terminal_id. The Lexicon allows termi-
nal_ids to be transformed back and forth from strings of text
to small ids. One advantage of using ids is that they are
placed in a small dense space and so can often simplify the
data structures that are used to manipulate them.

[0193] The Lexicon is stored in a format that enables easy
translation from terminal_id to terminal, and back. Each
terminal has a unique terminal_id.

[0194] Our model can be stored with all of the relevant
link relationships, be they from cluster to terminal or cluster
to cluster. The source of each link is referred to as the parent,
and the destination a child. Each link between a parent and
a child can be stored. In our model, this information is stored
in an inverted index, sharded by child_id. Each cluster as it
is created, is given its own cluster_id. This id may live in the
same space as the terminal_ids. The inverted index stores for
each child, the list of parents of that child, as well as their
existence probabilities, and their weights. All of this infor-
mation is bit-encoded using compressive techniques such as
rice encodings, in order to reduce the amount of space that
the index takes in memory.

[0195] One particular optimization is to store the inverted
index data in blocks of doubling sizes, where within each
block the parents are stored in id order for compression. The
inter-block ordering can then be chosen to emphasize the
important links for a target first. The advantage of this data
structure is the most important links into a terminal or cluster
can be retrieved without exploring the whole index entry.
This of course can be done simply by sorting by importance.
The second advantage is that large portions of the index
entry are sorted by id, making it more compressive than a
simple sort by importance.

[0196] The model may also be stored in an inverted order,
with parents having lists of children. This may be used for
debugging information. The model may also be separated
into separate index and data structures, where the index here
is a pointer index into the file so that the parents (or children)
of a cluster or terminal can be found with two file accesses.

[0197] In order to redo the link optimization for the next
iteration, and for parent picking, our model keeps around
various pieces of information such as (1) the probability of
each cluster given no other information about the session.
This approximated as the frequency of that cluster over the
last iteration of loopy (2) the total sum activation times
probability for each cluster. This is used for the virtual link
messages in the link optimization. This information is some-
times called the order one information or model, because it
is an order 1 (no correlation accounted for) model of whether
a cluster exists or not, and of its expected activation times
probability.

[0198] The model can also store all of the outlink sums for
all clusters. Here an outlink is a link from a cluster to another
cluster. This is summed up by multiplying the current
existence value of the link times its weight. The model can
also store all of its activated outlink sums. This is the sum
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of links from the cluster to terminals. These two pieces of
information are needed to figure out how to adjust the
cluster’s probability in response to only implicitly consid-
ering some of its children terminals or clusters—for example
when using cluster or terminal sparseness. This data is also
sharded by cluster_id.

[0199] The model may optionally store a list of cluster
names in a file. These names are typically decided on by
choosing a few of the more prominent terminals in the
cluster and concatenating them. This is largely a mnemonic
device for compounding. However, it can also be used to
identify via a terminal the current cluster in our model that
responds to a particular information need. For example, a set
of pornographic words may be used to identify pornographic
clusters, which can easily be then used in combination with
our model to form a search safe for children.

[0200] The up link messages are stored temporarily in the
processing of the next iteration. These messages are sharded
by a combination of parent and child id.

[0201] The above covers the data requirements of our
model while it is running, the next section details the
different steps in the running of our model.

[0202] (1) Process Sessions

[0203] First, our model is loaded largely into memory to
save file system accesses. Second, our model reads training
sessions from a file system. It forms local networks for those
sessions using the sparseness principles above. It then runs
inference (loopy) on the local sessions, because that is
required to settle on the probabilities of the various clusters,
which is important for extracting link messages (as detailed
above).

[0204] After running inference, our model extracts up link
messages from those sessions and saves those messages
sharded by (source_id, target_id) of the message. It also
extracts “node messages” from the sessions. These node
messages contain the current probability and activation of
both clusters and terminals (terminals always have an acti-
vation of 1). This information is saved to the file system
sharded by id to be processed by a later phase. Note now that
this information for each cluster is exactly what is needed to
adjust for the effect of “link message sparseness”, i.e. it
contains, in the parlance of FIG. 13, precisely the “a” and
“p” necessary to recreate an e ** message at any global
node with source C.

[0205] During this phase, our model also decides on which
of its sessions it can base new clusters off of. For each of
these sessions, our model creates a “new cluster message”
that records the likely terminals and clusters. The new
cluster will be intended to point at the terminals and be
pointed at by the clusters involved. These “new cluster
messages” are stored in the file system sharded by id for the
“process new clusters” phase to process.

[0206] This phase is sharded by session. This means that
the input can be broken up into many pieces (shards), and
each processing unit can handle only one particular set of
sessions. Note that the sharding of the input (by sessions) is
different than the sharding of the output. Consider for
example if there are N input session shards, and M output
node shards for the node messages (sharded by cluster id)
and L output shards for the link messages (by target id,
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source id). The output of this stage is then MN node message
files sharded by both the session shard and cluster id shard.
This data is then merged together N ways to produce the M
cluster id shards. A similar process occurs for the link shards
as well. In general, when a phase shards by a different
method than its output, its partial files are merged to obtain
a result sharded by what the next stage expects.

[0207] As an example, take a process that takes in data on
users by the days of the week, but produces data sharded by
the first letter of the last name of the user. It’s input is 7 files,
one for Monday, Tuesday, Wednesday, Thursday, Friday,
Saturday and Sunday. Its eventual output is to be 26 files,
one for each letter of the alphabet. However, first, each of the
7 processes produces its own 26 files, resulting in 182 files.
There is for example the “monday-a” file, the “monday-b”
file (and so on . . . ) the “tuesday-a’” file (and so on . . .)
Now, all 7 of the “a” files, are combined into one “a” file, and
similarly for all the other letters of the alphabet, until only
26 files result.

[0208] This “cross product merge” is one way of dealing
with input that is sharded differently from what is output. It
is a very efficient way of generating data in parallel, to be
consumed by further processes in parallel as well. An
alternative to it would be to simply use the file system and
append all the data simultaneously to the output shards. This
tends to be slower when large amounts of data are appended
and the source sharding is large.

[0209] (2) Compute O1

[0210] Here, the probability sum of the clusters, and the
sum of the activation times probability of the clusters is
determined. This information is simply a summary of “node
messages” produced in the process sessions phase. This
information is saved to the file system as a new set of
“summarized node messages” sharded by id and is part of
our model. This information is referred to as the order one
model.

[0211] This phase is sharded by node id (here node can be
either a terminal or a cluster). This means that each pro-
cessing unit is responsible for computing the order one
model for only part of the data, which in fact is the part that
it outputs data for; so no cross-product merge is necessary.

[0212] (3) Process New Clusters

[0213] This phase takes the new cluster messages, and
decides how the new clusters will fit into our model. This
decision is delayed until this time, because it requires
information computed in the O1 phase. This is for an
important dynamic theoretical reason. When a new cluster is
introduced a decision can be made on the likelihood and best
values of all links into it. Typically, such a cluster will be
linked from CANADA as well as the other links in the “new
cluster message™ it is based off of.

[0214] 1If the new cluster is given links that are too strong
(high weight and likelihood) it will immediately take over
words from existing good clusters, without learning new
concepts. This is because the cluster does not yet point to a
properly related set of terminals. If the new cluster is given
links that are too weak, it will not be important enough to
make a difference in any sessions, and it will not receive
strong enough link messages, and it will fail as well. Here
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failing means that the link messages it receives eliminate
links from/to it and the rest of the model.

[0215] In order to make the decision of how strong these
links should be, we consider how often in probability each
of its potential parents will fire. This is precisely the infor-
mation present in the order one model computed above. In
order to make this decision judiciously, we balance the link
likelihood and weight in order to expect a small number M
(usually 100) of expected occurrences of this cluster in the
next iteration.

[0216] The output of this phase is a set of “entry mes-
sages”. Entry messages are basically what exists in the
inverted index information of the model. An entry contains
information about a source, target, likelihood of existence
and best value. This information is sharded by target id.

[0217] This phase is sharded by the cluster id of the new
cluster. That is, each processing unit produces entry mes-
sages for only certain of the new cluster ids. Note since the
different processing units may be producing data that is
destined (by target id) for the same shard, they have to
append their data asynchronously to some of the same files
using the file system. A cross product merge could be used
here as well but the quantity of the data is fairly small, so the
data is just merged immediately at the file system level.

[0218] (4) Optimize Links

[0219] This phase receives all the link messages from the
process sessions phase, and all the summarized node mes-
sages, and optimizes the likelihood and probability of the
links in the manner described above in the link optimization
section. Its output is again a set of “entry messages” sharded
by target id.

[0220] This phase is sharded by a combination of source
and target id. That is, each processing unit is responsible for
only those links that fall within its sharding space. The
resulting data is fairly small, and need not go through a cross
product merge, it can be appended to a set of files in parallel
from all the sources.

[0221] (5) Build Parent Index

[0222] This phase takes all the entry messages and puts
them together for one particular target. This phase also limits
the number of sources that may point to a particular target
to a set number N. Typical values for N are 100 or so. The
N sources that get to point to the target are the most
important ones for the target. Importance here is determined
by the product of the ol value for the source, and the link
weight and link likelihood along that link. This simplifica-
tion is done to keep the number of parents pointing at a
particular node small, for reasons of efficiency. This is yet
another scalability technique, which we will refer to as “row
sparseness”.

[0223] The output of this phase is a particular shard of the
inverted indices for the model files described above. The
output is sharded by target id, the same way as the input.
This entire phase is sharded by target id as well.

[0224] (6) Build Child Index

[0225] This phase inverts the parent index data to build a
child index. It’s input is sharded by the target of a link, its
output is instead sharded by the source. Each processing unit
appends to a number of result files in parallel.
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[0226] The above describes the steps of running one
iteration of loopy belief propagation to refine a model. This
process repeats as necessary to obtain a better model.

[0227] Renumbering

[0228] There is a special step called “renumbering” that
occurs every few iterations. Recall that a cluster C; may link
to a cluster C, but not vice versa. In general, a cluster of id=i
may link to a cluster of id=j if and only if i is less than j. It
is desirable for the larger clusters to link to the smaller ones,
in order to learn specialization and generalization relation-
ships. Since concepts usually have more specializations than
generalizations, it therefore makes sense to place the larger
clusters earlier in the id space. This is unfortunately not
necessarily the order in which they are learned. For this
reason, we sometimes (every few iterations) renumber all of
the clusters.

[0229] Renumbering the clusters means changing the link
weights and likelihoods on almost all links. The way this
occurs is as follows. Say a cluster A points to a cluster B with
weight w. Furthermore, let the sum probability of A and B
be pl and p2 respectively (this is one of the components of
the o1 model). Now, we expect A to show up in approxi-
mately a fraction p1 of the sessions, B in a fraction p2 of the
sessions and both A AND B to show up in a fraction (p1 w)
of the sessions. These numbers are all approximations of
course. A reasonable approach to making B point to A would
be to keep the same number of expected joint occurrences.
This is achieved with a new link weight w' satisfying:

w'p2=wpl
or
w'=wpl/p2

[0230] In order to do this, a particular model is translated
into “entry messages”, the order one parts of the model are
loaded into memory (they are required for the pl and p2
components); and this translation takes place. The output of
the translation is a set of entry messages that then feeds into
the “build parent index” phase of the regular operation.

[0231] Parent Picking (Choosing Candidate Clusters)

[0232] When analyzing a session, one embodiment of the
present invention does not include all of the thousands of
clusters in the local belief network which we solve. We first
determine which clusters are remotely likely to be active,
and assume that the rest are off. We call the clusters that we
consider the “candidate clusters”. To determine which clus-
ters are to be candidates, we keep a priority queue of clusters
to be evaluated, so as to evaluate them in increasing order of
height in the model (decreasing cluster id, increasing gen-
erality). We add to that queue all parents of the terminals for
the session. We then begin popping clusters off of the queue
and evaluating them. For a given cluster C,, we construct a
belief network as shown in FIG. 15.1. We include a C, and
all terminals in the session linked to by C;. We weight the
links between these nodes as if C,; had activation equal to
some constant (we use 3.0). We add a link to the terminal
from nowhere with weights equal to the ol model of the
terminal multiplied by the number of words in the session.
This link approximately summarizes the chance that the
terminal is caused by something else. We add a link from
nowhere into C; with weight equal to the 01 model of C;. We
then solve this network to get a probability on C,. Since the
network is a tree, we can solve it quickly. If the probability
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of C; in the network exceeds a certain threshold (we use
0.05), we decide that C, is a candidate cluster. In this case
we add all parents of C; to the queue of clusters to be
evaluated.

[0233] In the case where we are evaluating a cluster C,,
which has as a child another cluster C; which we have
already made a candidate cluster, we want to include the
network we created for C, in the network we create for C,,
to add appropriate extra evidence on C,. The danger in such
an inclusion is that it will create loops in the network. We
therefore will only add terminals and cluster children to the
network for C, such that the terminals and the sub-networks
corresponding to the clusters are all disjoint. In choosing
which ones to include, we choose greedily in order of the
strength of the message that will be sent to C,. For example,
if cluster C, linked to the terminals “grey” and “mouse” in
the session and also to cluster C,, we could either construct
a network like in FIG. 15.2A which includes C,, or one like
in FIG. 15.2B which includes the link from C, to “grey”. We
would choose which one to construct depending on which
message was stronger, the one from C, to C, or the one from
“grey” to C,.

[0234] In practice, data structures corresponding to these
networks need not be constructed. When we make C, a
candidate cluster and we are adding its parent C, to the
queue of clusters to be evaluated, we can add a message as
well specifying the message that would be passed from C,
to C, if C, were included in the network for C,, and the set
of nodes in the tree rooted at C; (to avoid intersection with
other elements of the network for C,). Similar messages are
also added when adding to the queue the parents of the
terminals in the session. All of the computation can be done
in terms of these messages.

[0235] Differential Text Source Adjustment Techniques

[0236] We have been discussing our model in the context
of query sessions. However, as pointed out at the beginning
of the disclosure, our model can be run on any source of text,
such as web documents. One interesting technique we have
developed is in training our model on one source of data,
while applying it on another source.

[0237] For example, we can train our model on user
queries, but apply the trained model to predict the probabil-
ity of existence of various clusters in web pages. This is
sometimes problematic, because certain words such as verbs
occur much more in documents that in user queries which
tend to have many more nouns. Unfortunately, in queries,
many verbs occur in song lyrics, and often, a query-trained
model will identify most documents to be partly about song
lyrics!

[0238] A fix for this is to change the weight of the links
from CANADA to all terminals to reflect their probability in
the candidate language (i.e. the language of web pages).
Because an explanation from CANADA for a terminal is
basically a statement that there is no well-defined concept
that originated that terminal, this ends up discounting the
effect of those words somewhat. This often results in a better
concept engine for comparing the concepts in queries and
web pages.

[0239] Another small fix that can be applied deals with the
independence assumptions that are helpful to have in train-
ing text. Large numbers of web pages are copies of each
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other, cut and pasted into different web servers. Training our
model on all of these together is a little bit wasteful as it ends
up learning exactly the repeated copies, without any of the
hidden meaning behind them. In order to reduce this prob-
lem, one can eliminate all repeated runs of say N or more
words (N is typically 10 or so) from a large set of docu-
ments. This can be done by fingerprinting all sequences of
N words, sorting the fingerprints so as to group them, then
iterating back over the training text removing words that are
at the start of a 10 word run that is seen more than once. This
technique has been applied with our model when training on
web pages.

[0240] Demonstration

[0241] At this point, let’s take a look at some output from
our model in FIG. 16. Let’s look at the information below
the line “Model of 1378939 clusters”. The data is in a
two-column format. The left hand column reports the ol
model for a cluster, i.e. the sum of its probability of
existence in all sessions in the last iteration of our model.
The right hand is our current name for the cluster. Since
CANADA (the universal node) exists in all sessions, the
number 595417600 is also the number of user sessions this
model was trained on.

[0242] TLet’s take a look at the next cluster. It is labeled
[john david mark paul michael scott]. This is a cluster of first
names. The following cluster [free sex porn pics movies
xxx] is a cluster of pornographic words. The following
cluster [uk england london in-the-uk Itd friends-reunited]
focuses on UK content. A quick reminder that although this
model was run on a group of English queries, nothing in our
model is restrictive in terms of language, similar models can
easily be built in any other language. The next cluster is
[pictures of picture photos pics images]. Note that this
cluster is interesting, because it seems to be labeled by some
of the many different ways of asking for pictures on the web.
In fact, this is exactly what our model was intended to do,
to group together words by topic!

[0243] There are approximately 1.3 million of these top-
ics. Only a few (the largest) are displayed in FIG. 16. Now,
let’s take a closer look at one of the clusters. The one with
a count of 6408187 is labeled [jobs job employment in
job-search careers]. An HTML interface has been provided
with our model, and selecting that cluster brings up more
detailed information about the cluster. This more detailed
information is in FIG. 17. We will be reviewing first the
information below the horizontal line (we will return to the
search box later).

[0244] There are three main sections here, one labeled
PARENTS, one labeled CHILDREN and one that starts with
“ID 4737501”. The PARENTS and CHILDREN section list
the other clusters that this cluster is related to. The column
on the left lists the number of times that a parent is expected
to trigger, or a child is triggered by, this particular cluster.
The parent information here is sparse, only CANADA is a
parent of this cluster, and this is because the concept of jobs
is so large that renumbering moves it quickly to be a parent
of many other concepts.

[0245] Now let’s look at the children information. Note
that the children triggered most often are at the bottom of the
list. The child concept [in jobs for india it bangalore] is
expected to be triggered 378070 times from this jobs cluster.
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This sub-cluster is people in India searching for jobs! The
next sub-cluster is [programs degree program education
online masters] which talks about education. This means that
when people talk about jobs, they often talk about education!
The next cluster if about [salary salaries average salary-
survey wages pay] salaries! and so on . . . Our model
contains an interesting amount of information about the
world in that it determines that jobs are often related to
education and salaries and pay! The numbers that follow the
child clusters, for example (0.0608101,inf), are a pair detail-
ing the best value of the link between the two clusters, and
the logodds belief in the links” existence, which in this case
is infinite so the link is there with probability 1.0 according
to our model.

[0246] Now let’s look at the information starting with ID
4737501. This means that this job cluster’s id is 4737501. Its
“Total Firing: 6408187.000000” means that the sum prob-
ability of existence of this cluster (01) was 6408187 times in
the last iteration of our model. Firing is sometimes used as
a synonym here for probability or sum of probabilities. Its
“Total Activation: 11139140.000000” is the order one entry
for the sum of the cluster’s activation times its probability in
all sessions in the last iteration (it should really be called
Total Activation Times Probability but that name is
unwieldy). It’s “Outlink Sum: 0.848506” means the sum of
the weight times likelihood of its links to clusters is
0.848506. It’s “Activated Outlink Sum: 0.521899” means
that the sum of its weight times likelihood to terminals is
0.521899. Now the information below that is again in
two-column format. In a similar way to the CHILDREN and
PARENTS section, the next section details the links between
this cluster and terminals.

[0247] The first terminal is “jobs”. The information on the
left, 1841287, is the number of times this cluster triggers the
word “jobs”. The information to the right of the word is
again its best value and log likelihood of existence. The next
few words are “job”, “employment”, “in”, “job-search”,
“careers”, “it”, “career”, “job-opportunities”, “human-re-
sources”, and so on. All of these terminals are used when
people talk about the concept of jobs! Note that many more
terminals are linked to from this cluster, and only the most
significant ones are displayed in this figure.

[0248] Similarly, the use of any of these concepts indicates
that this idea is active, some words more than others. For
example, the word job is caused most by this concept. We
examine this by looking at a different output, this one
available for all terminals, for the word “jobs”. FIG. 18
shows this output. Starting from the line “TERMINAL:
jobs”. The next line is “Firing: 3049398.000000” which
means the sum of probabilities of occurrence of this word
over the previous iteration is 3049398 (note that because of
compounding, a terminal can have a probability of occur-
rence in a session different than 1.0). The next few lines
detail the clusters that cause this terminal most strongly, the
first being the [jobs job employment in job-search careers]
cluster! Note that many more clusters link to this terminal,
and only the most significant ones are displayed in this
figure.

[0249] Now, the terminal “in” is in the [jobs job employ-
ment in job-search careers] cluster, but, selecting the page
for the terminal in (shown in FIG. 19), we see that
CANADA is the cluster that causes “in” the most. The
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interpretation of this is as follows: “in” is used when people
are talking about jobs, but “in” is also caused by other things
more often, so it is not as strong an indicator as the word
“jobs” in what people are searching for. Note here as well
that many more clusters link to this terminal, and only the
most significant ones are displayed in this figure.

[0250] Now, we’re ready to look at the search box on the
top of the page. We enter the query “palo alto restaurants”
into the box and click Search. FIG. 20 shows the results of
this search. Let’s begin with the line “QUERY: palo alto
restaurants”. This is simply what was typed into the box. The
next two lines are the compound “palo alto” and the word
“restaurants”. They represent the current compounding
(sometimes called segmentation) of the query.

[0251] Now, let’s examine the numbers next to the word
palo-alto. The last number, 9.9789, is the number of bits it
takes to represent the word. There is a duality between bit
representation cost and probability, where bit cost is the
negative of the log base 2 of the probability. This means that
the word palo-alto occurs roughly one in 2"9.9789 (around
1000) times a word occurs. The number in the middle is an
APPROXIMATION to how many bits the word requires
given that the other words have been seen. The word
palo-alto does not get better (more likely) but the word
restaurants does! This is because people searching for palo
alto with a very high frequency (around 1 in 2*7 or 1 in 10)
want restaurants in palo alto. The same might apply in a
document for people writing about palo alto.

[0252] One use of this information is in determining which
words in a literal search can be dropped because they are less
specifying than the others. For example, if a search for “palo
alto” restaurants does not return enough results from a
corpus of documents, perhaps you can look for pages that
just mention palo alto and see if they are about restaurants
but use a different word (like one of the words in the
[restaurants in resturants restuarants dining best] cluster for
example). The first number for palo-alto 15.2624 is also a bit
cost, but assuming that the highly probable (>0.95) clusters
in a document are on, which none are for this session. This
number is also an approximation.

[0253] The line beginning with “session graph 8 nodes 16
edges” talks about the local network introduced to solve for
the evidence of having seen the terminals. Note that our
model has MANY more than 8 clusters, however, the
terminal and cluster sparseness techniques means that we
only have to look at 8 nodes total! Here a node can be either
a cluster or a terminal. The rest of that line deals with timing
information. The next few lines display information about
all the clusters found in the query. The first is a restaurant
cluster named [restaurants in resturants restuarants dining
best]. There are three columns of numbers on the left. The
first is the probability of the cluster. The second is its
probability times its activation. The third is its probability
times an adjusted activation. Recall that the activation inside
a local network is just set arbitrarily at the number of
possible words that it could trigger that are true. Once we
have solved the network, we can make another more edu-
cated guess at where the terminals originate from. We do this
by computing the probabilities of the trigger nodes between
each cluster and each terminal. The cluster then gets credit
for the probability of each terminal it launches as “adjusted
activation”.
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[0254] The second cluster to be found is the [san-jose ca
Sunnyvale santa-clara bay-area mountain-view] cluster,
with a probability of existence of 0.682912. The third is a
cluster of [palo-alto menlo-park restaurant evvia palo straits-
cafe] with probability of 0.37. An interesting thing to note
here is that both “Evvia” and “Straits Cafe” are actually
restaurants in Palo Alto. This cluster has specialized to be the
concept of restaurants around Palo Alto!

[0255] In this way, our model can be used to estimate the
probabilities that various concepts are present in any piece
of text. The same can be done for web pages as well, and by
looking at the joint concepts present in a web page and a
query, one of the uses of our model is for a search over web
pages. The next section talks about some of the uses of our
model.

[0256] Uses of the Model

[0257] This section details some of the possible uses of
our model.

[0258] (1) Guessing at the concepts behind a piece of
text. The concepts can then be displayed to a user
allowing the user to better understand the meaning
behind the text.

[0259] (2) Comparing the words and concepts between
a document and a query. This can be the information
retrieval scoring function that is required in any docu-
ment search engine, including the special case where
the documents are web pages.

[0260] (3) A different way of using our model for web
search is to assume that the distribution of clusters
extends the query. For example, a query for the word
“jaguar” is ambiguous. It could mean either the animal
or the car. Our model will identify clusters that relate to
both meanings in response to this search. In this case,
we can consider that the user typed in one of either two
queries, the jaguar (CAR) query or the jaguar (ANI-
MAL) query. We can then retrieve documents for both
of these queries taking into account the ratio of their
respective clusters’ probabilities. By carefully balanc-
ing how many results we return for each meaning, we
assure a certain diversity of results for a search.

[0261] (4) Comparing the words and concepts between
a document and an advertisement. This can be used as
a proxy for how well an advertisement will perform if
attached to a certain piece of content. A specialization
of this is attaching advertisements to web pages.

[0262] (5) Comparing the words and concepts between
a query and an advertisement (or targeting criteria for
an advertisement). In search engines, advertisers often
select a set of “targeting criteria”, which when they
show up in user queries, and ad is served. These text of
these criteria (and the ad copy itself) can be compared
to a query via the use of clusters in our model. This
comparison can be a proxy for how well the ad will
perform if served on a search page resulting from the

query.

[0263] (6) Comparing the words and concepts between
two documents. This can be used as a distance metric
for conceptual clustering of documents, where similar
documents are grouped together.
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[0264] (7) Projecting text into the space of clusters. The
probabilities of clusters in the text can be used as
features for an arbitrary classification task. For
example, a pornography filter can be produced by
projecting the text of a page onto clusters, and then
building a classifier that uses the clusters and the words
as its input.

[0265] (8) Generalizing a web query to retrieve more
results, using the bit cost or probability of a set of words
or terminals given their parent clusters.

[0266] (9) Guessing at whether a particular word is a
misspelling of another word by looking at the concepts
induced by the two words.

[0267] Local Inference Mechanisms

[0268] 1t is possible to solve local networks with
approaches other than loopy despite using loopy on the
global nodes. An advantage with such approaches is that
they may converge faster or more correctly than loopy. The
following two sections detail alternate inference mecha-
nisms that can be used on the local networks.

[0269] Another Local Inference Mechanism

[0270] Another way to do inference in the local networks
is to look for a few good solutions to the problem instead of
running loopy. We search around the space of complete
instantiations of the network to find a set of good solutions
to our network. We treat these as if they were a complete
enumeration of the solutions to the network. We can send up
link messages similar to the ones loopy sends, but more
accurate, if we consider a good enough set of solutions. The
remainder of our system remains largely the same.

[0271] Note that each time a cluster is flipped, we can
quickly update the probability of the entire network, and all
of these probabilities are stored (this is because the prob-
ability of an instantiation is the product of a number of local
conditional probability tables). During the search, a history
is stored for each cluster in the network. This helps us
compute the link messages faster at the end.

[0272] Usually, our search over complete instantiations
proceeds like this: We start with all clusters off, except for
CANADA. We then hill-climb to a local optimum by
flipping individual clusters on or off. Then, for each cluster
node other than CANADA, we start at the global optimum
so far, we flip the value of that node, and, keeping the value
of that node fixed, we hill-climb on the rest of the nodes until
a local optimum is reached. If in the process, we find a new
global optimum, we start over with that global optimum. In
this way, we are guaranteed of considering pretty good
solutions with each value of each of the non-CANADA
cluster nodes.

[0273] One advantage of this method is that the search can
be limited arbitrarily in order to trade off speed of execution
versus accuracy. In the analysis of larger pieces of text, in
order to have our model return in an adequate amount of
time, the tradeoff is often made in favor of speed of
execution.

[0274] Yet Another Local Inference Mechanism

[0275] One more way to do inference in the local networks
is to run loopy for a while and see if it converges quickly or
not. There are theoretical results that indicate that if loopy
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converges quickly, it converges more correctly. In this case,
if loopy does not converge quickly, one or more nodes can
be “conditioned” i.e. loopy is run for both true and false
values of these variables. If the network is conditioned
enough, loopy becomes more stable, this is because condi-
tioning on the top or side of loops breaks the cycle of
message looping in loopy (for various theoretical reasons).
This conditioning is applied recursively until loopy con-
verges quickly. After running conditioned loopy, the result is
various conditions under which all the link messages are
known.

[0276] All that remains is to be able to combine the
conditions together in their relative probabilities (since the
conditions are usually distinct). One technique we have
devised is to estimate the combination probabilities after
loopy has settled on a network using a measure of the
entropy of the network (roughly the number of remaining
free bits at network convergence) and the energy of the
network (roughly the amount that the network solution
violates previous constraints). This approximation allows us
to combine the various link messages in the correct order,
and the remainder of our model remains largely the same.

[0277] Process of Characterizing a Document

[0278] FIG. 21 illustrates data structures involved in
characterizing a document in accordance with an embodi-
ment of the present invention. These data structures include,
order one probability table 2102, parent table 2104, child
table 2106 and link table 2108.

[0279] Order one probability table 2102 includes entries
for each node in the probabilistic model that approximate the
order one (unconditional) probability that the node is active
in generating a given set of words. Hence, an entry in order
one probability table 2102 indicates how common an asso-
ciated word or cluster is in sets of words that are generated
by the probabilistic model. In one embodiment of the present
invention, order one priority table 2102 also includes an
“activation” for each cluster node indicating how many how
many links from the candidate cluster to other nodes are
likely to fire.

[0280] Parent table 2104 includes entries that identify
parents of associated nodes in the probabilistic model, as
well as the link weights from the identified parents.

[0281] Similarly, child table 2106 includes entries that
identify children of associated nodes in the probabilistic
model, as well as the link weights to the identified children.

[0282] Note that order one probability table 2102, parent
table 2104 and child table 2106 are pre-computed for the
probabilistic model, prior to characterizing the document.
On the other hand, link table 2108 is populated during the
process of characterizing a document.

[0283] Link table 2108 includes entries for links to con-
sider as evidence while constructing an evidence tree as is
discussed below with reference to FIGS. 22-25. Each entry
in link table 2108 contains the weight for an associated link
as well as the identifier for the associated parent node.
Moreover, link table 2108 can be sorted by parent identifier
as is discussed below.

[0284] FIG. 22 presents a flow chart of the characteriza-
tion process in accordance with an embodiment of the
present invention. The system starts by receiving a docu-
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ment containing a set of words (step 2202). Note that this
document can include a web page or a set of terms (words)
from a query.

[0285] Next, the system selects a set of “candidate clus-
ters” from the probabilistic model that are likely to be active
in generating the set of words (step 2204). This process is
described in more detail below with reference to FIG. 23.
Note that by selecting a set of candidate clusters, the system
limits the number of clusters that are considered in subse-
quent computational operations, thereby reducing the
amount of computation involved in characterizing the docu-
ment.

[0286] The system then constructs a vector (set of com-
ponents) to characterize the document (step 2206). This
vector includes components for candidate clusters, wherein
each component of the vector indicates a degree to which the
corresponding candidate cluster was active in generating the
set of words in the document. This process is described in
more detail below with reference to FIGS. 24-25.

[0287] Finally, the system can use this vector to facilitate
a number of different operations related to the document
(step 2208). Some of these uses are listed above in a
preceding section of this specification entitled “Uses of the
Model”.

[0288] FIG. 23 presents of a flow chart of the process for
selecting candidate clusters in accordance with an embodi-
ment of the present invention. This flow chart describes in
more detail the operations involved in performing step 2204
in FIG. 22. The system starts by constructing an “evidence
tree” starting from terminal nodes associated with the set of
words in the document and following links to parent nodes
(step 2302). As a node is selected to be part of the evidence
tree, links to the node from parent nodes are inserted into
link table 2108.

[0289] During the process of constructing the evidence
tree, the system uses the evidence tree to estimate the
likelihood that each parent cluster is active in generating the
set of words (step 2304). More specifically, in one embodi-
ment of the present invention, for a cluster node C; that only
points to terminal nodes, the system estimates the likelihood
that C; was involved in generating the set of words (we refer
to this estimated likelihood as the “Guess of C,”) using the
following formula,

| | P(Ci > w))
Guess(C;) = 01(C;) —
; P(w;)

[0290] wherein
B(C; _wj)=(weightcus w,)(activation,,),
[0291]
P(w;)=01(w))x(#words).

[0292] This formula indicates that the guess of C; is the
order one probability of C; multiplied by a product of
conditional probability contributions from active child
nodes w; of C;. The numerator of this contribution,
P(C;—wy), is the weight of the link from C; to w; multiplied
by a guess at the activation of C;. Recall that the activation

and wherein
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of C; is an indicator of the number of active links out of node
C,. The denominator of this contribution, P(w;), is the order
one probability of w; multiplied by the number of words in
the set of words.

[0293] For a cluster node, C;, that points to other cluster
nodes, the formula is slightly different,

Guess(Cp)=01(C;)-Score(Cy),
[0294] wherein

Score(C;) = 1_[ Contribution(Cy, C;)l_[ Contribution(w;, C;).
P J

[0295] As in the case of a cluster node that only points to
terminals, the guess of C, is the order one probability of C;
multiplied by a product of conditional probability contribu-
tions. However, these conditional probability contributions
come from other cluster nodes C, as well as from child
nodes w;.

[0296] The contribution from child nodes is the same as in
the case where the cluster node that only points to terminals,

P(Ci > w))

Contribution(w;, C;) = —
Pw;)

[0297] The contribution from other cluster nodes is more
complicated,

P(Ci | Ci)-Score(Cy) + 1 — P(Cy | Ci)
P(Cy)-Score(Cy) + 1 — P(Cy)

Contribution(Cy, C;) =

[0298] wherein P(C,|C,) is the conditional probability of
C_given C;, P(C,) is the order one probability of C,, and
Score(C,) is the previously calculated score of C,. Note that
since the evidence tree is constructed from terminals up, the
score of the child node C, will have been computed before
the score of the parent node C; is computed.

[0299] In one embodiment of the present invention, the
system marks terminal nodes during the estimation process
for a given cluster node to ensure that terminal nodes are not
factored into the estimation more than once.

[0300] Finally, the system selects parent nodes to be
candidate cluster nodes based on these estimated likelihoods
(step 2306). At the end of this “parent picking” process, the
system has a set of candidate clusters to consider along with
their activations.

[0301] FIG. 24 presents a flow chart of the process of
approximating probabilities for candidate clusters in accor-
dance with an embodiment of the present invention. The
system first selects states for the probabilistic model that are
likely to have generated the set of words (step 2402).

[0302] Next, the system constructs the vector, wherein the
vector includes components for candidate clusters. Each of
these components indicates a likelihood that a corresponding
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candidate cluster is active in generating the set of words. In
order to estimate a component, the system considers only
selected states in approximating the probability that an
associated candidate cluster is active in generating the set of
words (step 2404).

[0303] More specifically, in one embodiment of the
present invention, the system calculates a given component
V; of the vector associated with a cluster node C; to be,

Vi=Activation(C)xP(C}),

[0304] wherein the Activation(C,) is an indicator of the
number of links that will fire if node C; fires, and wherein
P(C,) is the probability that C; is active in generating the set
of words in the document.

[0305] P(C)) can be calculated as,

> Prewon(Ci i om)

PC) = _
Z Prenwork (€xplored)

[0306] This formula indicates that P(C)) is the sum of the
network probabilities for networks in which C; is discovered
to be active divided by the sum of all network probabilities
for networks that have been explored.

[0307] The probability of a given network state occurring
can be calculated as,

Pretwork = 1_[ 1- l_[

nodes i that are
on and point 10 j

(1-m)

nodes j
that are on

[T -w

nodes i that are
on and point to k

nodes k
that are off

[0308] This probability includes contributions from nodes
that are “on”. More specifically, for each node j that is on in
a given network, the system computes the probability that at
least one link into j (from an active parent node i) fires. This
is one minus the probability that no link into j from an active
parent node i fires, wherein the probability that a link from
an active node does not fire is one minus the link weight.

[0309] The probability also includes contributions from
nodes k that are “off”. For a given node k that is off, the
contribution is the probability that no link points to k from
active node 1, which is simply the product of one minus the
link weights.

[0310] FIG. 25 illustrates how states for the probabilistic
model are selected in accordance with an embodiment of the
present invention. This flow chart describes in more detail
the operations involved in performing step 2402 in FIG. 25.
In order to limit the amount of computational work involved
in selecting states, one embodiment of the present invention
considers only candidate cluster nodes and terminal nodes
associated with the set of words in the document. All other
nodes are ignored.



US 2004/0068697 Al

[0311] The system starts by randomly selecting a starting
state for the probabilistic model (step 2502). Each starting
state indicates which nodes in the probabilistic model are
active and which ones are not. Note that any starting state is
possible because the universal node can trigger any subset of
the candidate nodes to fire.

[0312] Also note that link weights in the probabilistic
model tend to make some states more likely than others in
generating the set of words in the document. Hence, it is
unlikely that a random starting state would have generated
the set of words in the document. In order to find a more
likely state, the system performs “hill-climbing” operations
to reach a state that is likely to have generated the set of
words in the document (step 2504). Note that a large number
of well-known hill climbing techniques can be used for this
purpose. A hill-climbing operation, typically changes the
state of the system in a manner that increases the value of a
specific objective function. In this case, the objective func-
tion is the probability of a given network state occurring,
P, .iwone Which is described above.

[0313] In one embodiment of the present invention, the
system periodically changes the state of an individual can-
didate cluster between hill-climbing operations without
regards to the objective function. In doing so, the system
fixes the changed state so it does not change during subse-
quent hill-climbing operations. This produces a local opti-
mum for the objective function, which includes the changed
state, which enables to system to explore states of the
probabilistic model that are otherwise unreachable through
only hill-climbing operations.

[0314] The foregoing descriptions of embodiments of the
present invention have been presented for purposes of
illustration and description only. They are not intended to be
exhaustive or to limit the present invention to the forms
disclosed. Accordingly, many modifications and variations
will be apparent to practitioners skilled in the art. Addition-
ally, the above disclosure is not intended to limit the present
invention. The scope of the present invention is defined by
the appended claims.

What is claimed is:

1. Amethod for characterizing a document with respect to
clusters of conceptually related words, comprising:

receiving the document, wherein the document contains a
set of words;

selecting candidate clusters of conceptually related words
that are related to the set of words;

wherein the candidate clusters are selected using a model
that explains how sets of words are generated from
clusters of conceptually related words; and

constructing a set of components to characterize the
document, wherein the set of components includes
components for candidate clusters, wherein each com-
ponent indicates a degree to which a corresponding
candidate cluster is related to the set of words.

2. The method of claim 1, wherein the model is a
probabilistic model, which contains nodes representing ran-
dom variables for words and for clusters of conceptually
related words.

Apr. 8, 2004

3. The method of claim 2, wherein each component in the
set of components indicates a degree to which a correspond-
ing candidate cluster is active in generating the set of words.

4. The method of claim 3,

wherein nodes in the probabilistic model are coupled
together by weighted links; and

wherein if a cluster node in the probabilistic model fires,
a weighted link from the cluster node to another node
can cause the other node to fire.

5. The method of claim 4, wherein if a node has multiple
parent nodes that are active, the probability that the node
does not fire is the product of the probabilities that links
from the active parent nodes do not fire.

6. The method of claim 2, wherein the probabilistic model
includes a universal node that is always active and that has
weighted links to all cluster nodes.

7. The method of claim 4, wherein selecting the candidate
clusters involves:

constructing an evidence tree by starting with terminal
nodes associated with the set of words in the document,
and following links in the reverse direction to parent
cluster nodes;

using the evidence tree to estimate a likelihood that each
parent cluster node was active in generating the set of
words; and

selecting a parent cluster node to be a candidate cluster
node based on its estimated likelihood.
8. The method of claim 7, wherein estimating the likeli-
hood that a given parent node is active in generating the set
of words may involve considering:

the unconditional probability that the given parent node is
active;

conditional probabilities that the given parent node is
active assuming parent nodes of the given parent node
are active; and

conditional probabilities that the given parent node is
active assuming child nodes of the given parent node
are active.

9. The method of claim 8, wherein considering the con-
ditional probabilities involves considering weights on links
between nodes.

10. The method of claim 7 wherein estimating the like-
lihood that a given parent node is active in generating the set
of words involves marking terminal nodes during the esti-
mation process to ensure that terminal nodes are not factored
into the estimation more than once.

11. The method of claim 7, wherein constructing the
evidence tree involves pruning unlikely nodes from the
evidence tree.

12. The method of claim 3, wherein during construction
of the set of components, the degree to which a candidate
cluster is active in generating the set of words is determined
by calculating a probability that a candidate cluster is active
in generating the set of words.

13. The method of claim 3, wherein during construction
of the set of components, the degree to which a candidate
cluster is active in generating the set of words is determined
by multiplying a probability that a candidate cluster is active
in generating the set of words by an activation for the
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candidate cluster, wherein the activation indicates how many
links from the candidate cluster to other nodes are likely to
fire.

14. The method of claim 1, wherein constructing the set
of components involves normalizing the set of components.

15. The method of claim 3, wherein constructing the set
of components involves approximating a probability that a
given candidate cluster is active over states of the probabi-
listic model that could have generated the set of words.

16. The method of claim 15, wherein approximating the
probability involves:

selecting states for the probabilistic model that are likely
to have generated the set of words in the document; and

considering only selected states while calculating the
probability that the given candidate cluster is active.
17. The method of claim 16, wherein selecting a state that
is likely to have generated the set of words involves:

randomly selecting a starting state for the probabilistic
model; and

performing hill-climbing operations beginning at the
starting state to reach a state that is likely to have
generated the set of words.

18. The method of claim 17, wherein performing the
hill-climbing operations involves periodically changing
states of individual candidate clusters without regards to an
objective function for the hill-climbing operations to explore
states of the probabilistic model that are otherwise unreach-
able through hill-climbing operations.

19. The method of claim 18, wherein changing a state of
an individual candidate cluster involves temporarily fixing
the changed state to produce a local optimum for the
objective function, which includes the changed state.

20. The method of claim 1, wherein the document can
include:

a web page; or

a set of terms from a query.

21. A computer-readable storage medium storing instruc-
tions that when executed by a computer cause the computer
to perform a method for characterizing a document with
respect to clusters of conceptually related words, the method
comprising:

receiving the document, wherein the document contains a
set of words;

selecting candidate clusters of conceptually related words
that are related to the set of words;

wherein the candidate clusters are selected using a model
that explains how sets of words are generated from
clusters of conceptually related words; and

constructing a set of components to characterize the
document, wherein the set of components includes
components for candidate clusters, wherein each com-
ponent indicates a degree to which a corresponding
candidate cluster is related to the set of words.

22. The computer-readable storage medium of claim 21,
wherein the model is a probabilistic model, which contains
nodes representing random variables for words and for
clusters of conceptually related words.

23. The computer-readable storage medium of claim 22,
wherein each component in the set of components indicates
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a degree to which a corresponding candidate cluster is active
in generating the set of words.
24. The computer-readable storage medium of claim 23,

wherein nodes in the probabilistic model are coupled
together by weighted links; and

wherein if a cluster node in the probabilistic model fires,
a weighted link from the cluster node to another node
can cause the other node to fire.

25. The computer-readable storage medium of claim 24,
wherein if a node has multiple parent nodes that are active,
the probability that the node does not fire is the product of
the probabilities that links from the active parent nodes do
not fire.

26. The computer-readable storage medium of claim 22,
wherein the probabilistic model includes a universal node
that is always active and that has weighted links to all cluster
nodes.

27. The computer-readable storage medium of claim 24,
wherein selecting the candidate clusters involves:

constructing an evidence tree by starting with terminal
nodes associated with the set of words in the document,
and following links in the reverse direction to parent
cluster nodes;

using the evidence tree to estimate a likelihood that each
parent cluster node was active in generating the set of
words; and

selecting a parent cluster node to be a candidate cluster

node based on its estimated likelihood.

28. The computer-readable storage medium of claim 27,
wherein estimating the likelihood that a given parent node is
active in generating the set of words may involve consid-
ering:

the unconditional probability that the given parent node is
active;

conditional probabilities that the given parent node is
active assuming parent nodes of the given parent node
are active; and

conditional probabilities that the given parent node is
active assuming child nodes of the given parent node
are active.

29. The computer-readable storage medium of claim 28,
wherein considering the conditional probabilities involves
considering weights on links between nodes.

30. The computer-readable storage medium of claim 27,
wherein estimating the likelihood that a given parent node is
active involves marking terminal nodes during the estima-
tion process to ensure that terminal nodes are not factored
into the estimation more than once.

31. The computer-readable storage medium of claim 27,
wherein constructing the evidence tree involves pruning
unlikely nodes from the evidence tree.

32. The computer-readable storage medium of claim 23,
wherein during construction of the set of components, the
degree to which a candidate cluster is active in generating
the set of words is determined by calculating a probability
that a candidate cluster is active in generating the set of
words.

33. The computer-readable storage medium of claim 23,
wherein during construction of the set of components, the
degree to which a candidate cluster is active in generating
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the set of words is determined by multiplying a probability
that a candidate cluster is active in generating the set of
words by an activation for the candidate cluster, wherein the
activation indicates how many links from the candidate
cluster to other nodes are likely to fire.

34. The computer-readable storage medium of claim 21,
wherein constructing the set of components involves nor-
malizing the set of components.

35. The computer-readable storage medium of claim 23,
wherein constructing the set of components involves
approximating a probability that a given candidate cluster is
active over states of the probabilistic model that could have
generated the set of words.

36. The computer-readable storage medium of claim 35,
wherein approximating the probability involves:

selecting states for the probabilistic model that are likely
to have generated the set of words in the document; and

considering only selected states while calculating the
probability that the given candidate cluster is active.
37. The computer-readable storage medium of claim 36,
wherein selecting a state that is likely to have generated the
set of words involves:

randomly selecting a starting state for the probabilistic
model; and

performing hill-climbing operations beginning at the
starting state to reach a state that is likely to have
generated the set of words.

38. The computer-readable storage medium of claim 37,
wherein performing the hill-climbing operations involves
periodically changing states of individual candidate clusters
without regards to an objective function for the hill-climbing
operations to explore states of the probabilistic model that
are otherwise unreachable through hill-climbing operations.

39. The computer-readable storage medium of claim 38,
wherein changing a state of an individual candidate cluster
involves temporarily fixing the changed state to produce a
local optimum for the objective function, which includes the
changed state.

40. The computer-readable storage medium of claim 21,
wherein the document can include:

a web page; or

a set of terms from a query.

41. An apparatus for characterizing a document with
respect to clusters of conceptually related words, compris-
ing:

a receiving mechanism, configured to receive the docu-
ment, wherein the document contains a set of words;

a selection mechanism configured to select candidate
clusters of conceptually related words that are related to
the set of words;

wherein the candidate clusters are selected using a model
that explains how sets of words are generated from
clusters of conceptually related words; and

a component construction mechanism configured to con-
struct a set of components to characterize the docu-
ment, wherein the set of components includes compo-
nents for candidate clusters, wherein each component
indicates a degree to which a corresponding candidate
cluster is related to the set of words.
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42. The apparatus of claim 41, wherein the model is a
probabilistic model, which contains nodes representing ran-
dom variables for words and for clusters of conceptually
related words.

43. The apparatus of claim 42, wherein each component
in the set of components indicates a degree to which a
corresponding candidate cluster is active in generating the
set of words.

44. The apparatus of claim 43,

wherein nodes in the probabilistic model are coupled
together by weighted links; and

wherein if a cluster node in the probabilistic model fires,
a weighted link from the cluster node to another node
can cause the other node to fire.

45. The apparatus of claim 44, wherein if a node has
multiple parent nodes that are active, the probability that the
node does not fire is the product of the probabilities that
links from the active parent nodes do not fire.

46. The apparatus of claim 43, wherein the probabilistic
model includes a universal node that is always active and
that has weighted links to all cluster nodes.

47. The apparatus of claim 44, wherein the selection
mechanism is configured to:

construct an evidence tree by starting with terminal nodes
associated with the set of words in the document, and
following links in the reverse direction to parent cluster
nodes;

use the evidence tree to estimate a likelihood that each
parent cluster node was active in generating the set of
words; and to

select a parent cluster node to be a candidate cluster node

based on its estimated likelihood.

48. The apparatus of claim 47, wherein while estimating
the likelihood that a given parent node is active in generating
the set of words, the selection mechanism is configured to
consider at least one of the following:

the unconditional probability that the given parent node is
active;

conditional probabilities that the given parent node is
active assuming parent nodes of the given parent node
are active; and

conditional probabilities that the given parent node is
active assuming child nodes of the given parent node
are active.

49. The apparatus of claim 48, wherein while considering
the conditional probabilities, the selection mechanism is
configured to consider weights on links between nodes.

50. The apparatus of claim 47, wherein while estimating
the likelihood that a given parent node is active in generating
the set of words, the selection mechanism is configure to
mark terminal nodes during the estimation process to ensure
that terminal nodes are not factored into the estimation more
than once.

51. The apparatus of claim 47, wherein while constructing
the evidence tree, the selection mechanism is configured to
prune unlikely nodes from the evidence tree.

52. The apparatus of claim 43, wherein while constructing
a given component in the set of components, the component
construction mechanism is configured to determine the
degree to which a candidate cluster is active in generating
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the set of words by calculating a probability that a candidate
cluster is active in generating the set of words.

53. The apparatus of claim 43, wherein while constructing
a given component in the set of components, the component
construction mechanism is configured to determine the
degree to which a candidate cluster is active in generating
the set of words by multiplying a probability that a candidate
cluster is active in generating the set of words by an
activation for the candidate cluster, wherein the activation
indicates how many links from the candidate cluster to other
nodes are likely to fire.

54. The apparatus of claim 41, wherein the component
construction mechanism is configured to normalize the set of
components.

55. The apparatus of claim 43, wherein the component
construction mechanism is configured to approximate a
probability that a given candidate cluster is active over states
of the probabilistic model that could have generated the set
of words.

56. The apparatus of claim 55, wherein while approxi-
mating the probability, the component construction mecha-
nism is configured to:

select states for the probabilistic model that are likely to
have generated the set of words in the document; and
to

consider only selected states while calculating the prob-
ability that the given candidate cluster is active.

57. The apparatus of claim 56, wherein while selecting a

state that is likely to have generated the set of words, the
component construction mechanism is configured to:

randomly select a starting state for the probabilistic
model; and to

perform hill-climbing operations beginning at the starting
state to reach a state that is likely to have generated the

set of words.
58. The apparatus of claim 58, wherein while performing
the hill-climbing operations, the component construction

Apr. 8, 2004

mechanism is configured to periodically change states of
individual candidate clusters without regards to an objective
function for the hill-climbing operations to explore states of
the probabilistic model that are otherwise unreachable
through hill-climbing operations.

59. The apparatus of claim 58, wherein while changing a
state of an individual candidate cluster, the component
construction mechanism is configured to temporarily fix the
changed state to produce a local optimum for the objective
function, which includes the changed state.

60. The apparatus of claim 41, wherein the document can
include:

a web page; or

a set of terms from a query.

61. A computer-readable storage medium containing a
data structure that facilitates characterizing a document with
respect to clusters of conceptually related words, the data
structure comprising:

a probabilistic model that contains nodes representing
random variables for words and for clusters of concep-
tually related words;

wherein nodes in the probabilistic model are coupled
together by weighted links;

wherein if a cluster node in the probabilistic model fires,
a weighted link from the cluster node to another node
can cause the other node to fire; and

wherein the other code can be associated with a word or
a cluster.

62. The computer-readable storage medium of claim 61,
wherein the probabilistic model includes a universal node
that is always active and that has weighted links to all cluster
nodes.



